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Abstract- In this work, Homotopy Perturbation Method (HPM),
which is a combination of a homotopy transformation and the
perturbation method is applied to the fixed source neutron diffusion
equation. Regarding the utilization of HPM, we employ Fourier basis
for expressing the initial approximation due to the structure of the
problem and its boundary conditions. We compare the results of the
present method with that obtained by the well known Separation of
Variables (SoV).

Index Terms- Homotopy Perturbation Method, Fixed Source
Neutron Diffusion Equation.

1. INTRODUCTION

OMOTOPY Perturbation Method (HPM), proposed by
J.H.He, does not require a small parameter like traditional
perturbation methods [1]-[3]. The HPM has been studied
extensively in both analytical and numerical aspects for
solving linear and nonlinear differential and integral equations.

It is a coupling of the homotopy and the perturbation technique.

It continuously deforms the original equation to a simpler
problem that yields a relatively straightforward solution.

In recent studies, iterations converging to the solution of the
fixed source neutron diffusion equation (NDE) has been
obtained using HAM and ADM [4], [5]. Here, we apply the
HPM to NDE; in Section 2 we give the definitions that are
fundamental to this method. We next consider NDE and utilize
HPM. The results are presented in Section 4 in comparison to
the Seperation of Variables (SoV) before we conclude.

II. HOMOTOPY PERTURBATION METHOD

We summarize HPM as presented in [2] for convenience. In
HPM, we consider an equation involving linear and/or
nonlinear operators A, such that

Alu(H)]-f(F)=0, Fe 2 (1)
with boundary condition
B(u,du/on)=0, rel” 2)

where 7 is an independent variable, A is a general differential
operator, B is a boundary operator, f () is a known function and

u(r) is the solution. The operator A can be divided into linear

(L) and nonlinear (N) parts.
Let us consider a homotopy equation which is constructed,
through an unknown function v(7; p) as

(= p){L[vF: )]~ L[u, (O]} + p{AlvG p]- F(D)} =0 (3)

where pe [0, 1] is an embedding parameter, u,(7) is an initial

approximation of (1). For p = 0, the homotopy equation given
by (3) leads

V(r;0)—u,(7) =0 )
and we note that the initial approximation is a distinct concept

than the boundary conditions of the problem.
On the other hand, for p = 1, (3) leads

AlvFED]-fF) =0 5)
As p is varied from zero to unity, v(¥;p) varies from

u,(F)to u(¥).In topology, this is called deformation, and (4)
and (5) are called homotopic.

Assume that the solution of (3) can be written as a power
series in p

v(F;p)=vy + pv, + [)2\/2 + [)3\/3 +.... (6)

Setting p=1 results in the approximate solution of (1)

u=limv=v,+v,+v, +v; +.... @)

p—l

The convergence of the series above has been proved in [2].

III. APPLICATION TO THE FIXED SOURCE NDE

The neutron diffusion equation (NDE) for a general
geometry where the vacuum boundary conditions are valid is
given by

quﬁ(f)—fr%(f):—sg), feV: ¢(f)=0, teS (8)

where ¢ is the neutron flux, Sis the neutron source, D is the
diffusion constant, X, is the absorption cross section and
k=X /D.

We consider the NDE for a two dimensional system with a
square geometry. Since the system is symmetric with respect to
both the x and y axes, we utilize HPM for only a single

quadrant. For the case, the NDE together with the boundary
conditions given by (8) reduces to

I¢(x.y) 9'¢(xy) S
+ — K N = —— 9
o’ o pler)==3 ®
LLLC) N 9(xy)=0 ar x=a
ox
a¢(ax’y)'=0 at y=0 ¢(xy)=0 ar y=a
y



In order to utilize the HPM, we substitute L =9*/dx*> and
A=0%/0x*+9*/dy* =k in (9) and construct the homotopy
equation which has the general form given by (3), i.e.
2 a a 2
ﬂ_ ¢0 ¢io I pa_‘z’
a dy

S
- pKv+p—=0 10
L (10)

x> ox’

Regarding the type of the fixed source neutron diffusion
equation and the boundary conditions, we consider an initial
approximation in the form

9,(x.y)= 2 b,Cos(4,y)

n=0

(1)

In order to have the presumption in (11) satisfy the
boundary conditions, we substitute the condition for y =
yielding that B =(2n+1)7/2a n=0,12,...

For convenience, we rewrite the known force term in (10)
in the same basis set with (11), i.e.

(12)

S -
B = Z s,Cos(8.y)

The orthogonality of the Fourier basis that

s, =(=1)"2S/aDg, holds.

yields

We obtain the HPM recursion after substituting the
presumption given by (6) in (10):

3’v, (%, y)
0
———=0
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b +—=2 -, (x,y)+—=0
P ox’ oy’ Yo (%:3) D (13)
9’ , 9’
Ly vz()zc y) v (x,y) — 0 () =0
ox oy’

The coupled equations above are solved starting from v,
and proceeding in order. The corresponding solutions of the
first two equations are given as

2S (- X
v, (x,y;p)=p Zb C()s(ﬁ y)|:a —__Qx_:|

o 21 Da B 2!
, 28 (=" x*
v,(X,y;p)=p Zb Cos(f, y)|:0{ Z—aﬂ‘ E%%} (14)

where af = ,an —Kz.Considering (6) and (7) solution of the
NDE is given by

Y):i%(x’}’)

m=0 (15)
( 1) ( Cosh(, x))

Cosh(«,a)
The recursions above can be realized through software
packages that feature symbolic programming such as
Mathematica and Matlab.

1IV. EXAMPLE

In this example, we consider a square reactor core with
edge length 2a = 50 cm and apply HPM for one quadrant of
the system which is sufficient owing to the symmetricity.
Notice that the vacuum conditions at the left and upper
boundaries together with the reflector conditions at the right
and lower boundaries are as expressed in (9). The constants of
the reactor are presented in Table 1.

TABLE I
REACTOR CONSTANTS
Constant Value
a (cm) 25
D (cm) 1.77764
Y. (cm™) 1
S 1

For the case, the series sum obtained via the separation of
variables achieves 107 precision for the partial sum of the first
M = 356 terms. We assume this result as the exact solution.
Computations utilizing Mathematica yield that HPM achieves
this precision for M = 356 terms partial sum as well.

We present the computational results of HPM on a 25x25
grid and for M = 356 term partial sum in Table 2 together with
that for SoV in a comparative manner.

TABLE I
RESULTS FOR Y=0
x (cm) SoV HPM Error (x10°)
0 47.47293 | 47.47293 5
5 46.32885 | 46.32885 5
10 42.57155 | 42.57155 6
15 35.15265 | 35.15265 7
20 22.07556 | 22.07556 1.1
25 0 0 0

V. CONCLUSION

In this work, we apply the HPM to fixed source neutron
diffusion equation. The computational results indicate that
HPM, compared to the widely used analytic method of
separation of variables, yields shorter and relatively
straightforward expressions for the solution and exhibits high
accuracy with a comparable convergence speed.
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