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Abstract- In this work, Homotopy Perturbation Method (HPM), 

which is a combination of a homotopy transformation and the 
perturbation method is applied to the fixed source neutron diffusion 
equation. Regarding the utilization of HPM, we employ Fourier basis 
for expressing the initial approximation due to the structure of the 
problem and its boundary conditions. We compare the results of the 
present method with that obtained by the well known Separation of 
Variables (SoV). 

 
Index Terms- Homotopy Perturbation Method, Fixed Source 

Neutron Diffusion Equation. 
 

I.  INTRODUCTION 

OMOTOPY Perturbation Method (HPM), proposed by  
J.H.He, does not require a small parameter like traditional 

perturbation methods [1]-[3]. The HPM has been studied 
extensively in both analytical and numerical aspects for 
solving linear and nonlinear differential and integral equations. 
It is a coupling of the homotopy and the perturbation technique. 
It continuously deforms the original equation to a simpler 
problem that yields a relatively straightforward solution. 

In recent studies, iterations converging to the solution of the 
fixed source neutron diffusion equation (NDE) has been 
obtained using HAM and ADM [4], [5]. Here, we apply the 
HPM to NDE; in Section 2 we give the definitions that are 
fundamental to this method. We next consider NDE and utilize 
HPM. The results are presented in Section 4 in comparison to 
the Seperation of  Variables (SoV) before we conclude. 

II.  HOMOTOPY PERTURBATION METHOD 

We summarize HPM as presented in [2] for convenience. In 
HPM, we consider an equation involving linear and/or 
nonlinear operators A, such that  
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with boundary condition 
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where r
�

is an independent variable, A is a general differential 
operator, B is a boundary operator, ( )f r

�

 

is a known function and 
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is the solution.  The operator A can be divided into  linear 

(L) and nonlinear (N) parts.  
Let us consider a homotopy equation which is constructed, 

through an unknown function ( ; )v r p
�

 as 
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where p∈ [0, 1] is an embedding parameter, 0 ( )u r
�

 

is an initial 

approximation of (1). For p = 0, the homotopy equation given 
by (3) leads 
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and we note that the initial approximation is a distinct concept 
than the boundary conditions of the problem.  

On the other hand, for p = 1, (3) leads 
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 (5) 

As p is varied from zero to unity, ( ; )r pv
�

varies from 

0
( )u r
�

to ( ) .u r
�

In topology, this is called deformation, and (4) 

and (5) are called homotopic. 
Assume that the solution of  (3) can be written as a power 

series in p 
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Setting p=1 results in the approximate solution of (1) 
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The convergence of the series above has been proved in [2]. 

III.  APPLICATION TO THE FIXED SOURCE NDE 

The neutron diffusion equation (NDE) for a general 
geometry where the vacuum boundary conditions are valid is 
given by 
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where φ  is the neutron flux, S is the neutron source, D is the 

diffusion constant, aΣ is the absorption cross section and 
2

a / Dκ Σ= . 

We consider the NDE for a two dimensional system with a 
square geometry. Since the system is symmetric with respect to 
both the x and y axes, we utilize HPM for only a single 
quadrant. For the case, the NDE together with the boundary 
conditions given by (8) reduces to 
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In order to utilize the HPM, we substitute 2 2L / x= ∂ ∂   and 
2 2 2 2 2A / /x y κ= ∂ ∂ + ∂ ∂ −  in  (9) and construct the homotopy 

equation which has the general form given by (3), i.e.   
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Regarding the type of the fixed source neutron diffusion 
equation and the boundary conditions, we consider an initial 
approximation in the form 
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In order to have the presumption in (11) satisfy the 
boundary conditions, we substitute the condition for y = a 
yielding that 0,1, 2,....(2 1) / 2

n
nn aβ π= =+  

For convenience, we rewrite the known force term in (10) 
in the same basis set with (11), i.e. 
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The orthogonality of the Fourier basis yields that 

n

n
ns ( 1) 2S/ aDβ= −   holds.  

We obtain the HPM recursion after substituting the 
presumption given by (6) in (10):  
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The coupled equations above are solved starting from v0 
and proceeding in order. The corresponding solutions of the 
first two equations are given as 
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where 2 2 2 .n nα β κ= − Considering (6) and (7) solution of the 

NDE is given by  
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The recursions above can be realized through software 
packages that feature symbolic programming such as 
Mathematica and Matlab. 

IV.  EXAMPLE 

In this example, we consider a square reactor core with 
edge length 2a = 50 cm and apply HPM for one quadrant of 
the system which is sufficient owing to the symmetricity. 
Notice that the vacuum conditions at the left and upper 
boundaries together with the reflector conditions at the right 
and lower boundaries are as expressed in (9). The constants of 
the reactor are presented in Table 1. 

TABLE I 
REACTOR CONSTANTS 

Constant Value 

a (cm) 25 

D (cm) 1.77764 

Σa (cm-1) 1 

S 1 

For the case, the series sum obtained via the separation of 
variables achieves 10−7 precision for the partial sum of the first 
M = 356 terms. We assume this result as the exact solution. 
Computations utilizing Mathematica yield that HPM achieves 
this precision for M = 356 terms partial sum as well. 

We present the computational results of HPM on a 25x25 
grid and for M = 356 term partial sum in Table 2 together with 
that for SoV in a comparative manner. 

TABLE II  
RESULTS FOR Y=0 

x (cm) SoV HPM Error (x10
-9

) 

0 47.47293 47.47293 5 
5 46.32885 46.32885 5 

10 42.57155 42.57155 6 
15 35.15265 35.15265 7 
20 22.07556 22.07556 1.1 
25 0 0 0 

V.  CONCLUSION 

In this work, we apply the HPM to fixed source neutron 
diffusion equation. The computational results indicate that 
HPM, compared to the widely used analytic method of 
separation of variables, yields shorter and relatively 
straightforward expressions for the solution and exhibits high 
accuracy with a comparable convergence speed. 
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