
 5th International Ege Energy Symposium and Exhibition (IEESE-5) 

27-30 June 2010 

Pamukkale University, Denizli, Turkey 

 

Homotopy Analysis Method for One Group Neu-

tron Diffusion Equation 

Şükran Çavdar
 

cavdar@itu.edu.tr / Energy Institute / Istanbul Technical University 

 
 

I. INTRODUCTION 

The Homotopy Analysis Method (HAM) is an analytic 

method that provides series solutions and has been pro-

posed first by Liao [1]. It has been successfully applied to 

linear and non-linear equations in various fields of engi-

neering and science since then (e.g. [2-12]). The features 

of this approach includes that the convergence speed and 

the region of convergence (ROC) of the series solution can 

be controlled via convergence control parameters h, which 

is an advantage. In this respect, it is possible to utilize 

HAM for linear and/or non-linear problems without any 

assumptions or restrictions [6]. 

Another appeal of HAM is that, there is a broad range of 

freedom for the selection of the base functions suitable for 

the problem in hand, the initial guess, the auxiliary linear 

operator and the convergence control parameters. How-

ever, this selection is by no means arbitrary and depends 

on the type of the problem as well as its boundary condi-

tions. A thorough treatment of this issue can be found in 

[6]. 

In a recent work, we have solved the fixed source neu-

tron diffusion equation using HAM [13]. Here, we con-

sider a  multiplying media scenario and apply the HAM to 

one group neutron diffusion equation. In Section 2 we give 

the definitions that are fundamental to this method. We 

next consider neutron diffusion equations and utilize HAM 

for solving. The results are presented in Section 4 in com-

parison to the Seperation of  Variable (SoV) method. Fi-

nally, we conclude. 

II. FUNDAMENTAL DEFINITION 

The Homotopy Analysis Method (HAM) considers a 

general set of equations involving linear and/or non-linear 

operators Ni such that  

[ ]( ) ( ), 1,..,
i i i

N u x g x i l= =
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 (1) 

for i = 1, 2, ..., l where x
�

 is an independent variable, 

( )ig x
�

is a known function and { }
1,2,...

( )
i i l

u x
=
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is the solu-

tion[6]. Let us consider ( )iu x
�

; its so-called zero-order 

deformation equation is constructed, through an unknown 

function ( ; )i x qΘ
�

 

as 
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where q ∈ [0, 1] is the embedding parameter, �  is a non-

zero real number referred to as the auxiliary parameter or 

the convergence control parameter, £ is the auxiliary linear 

operator, and ,0 ( )iu x
�

 

is an initial guess for the solution 

( )iu x
�

. 

For q = 0, the zero-order deformation equation given by 

(2) leads 

,0
( ; 0) ( )

i i
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 (3) 
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and it is apparent that the initial guess, i.e. ,0 ( )iu x
�

, does 

not rely on the boundary conditions of the problem. It  is 

important, that one has a remarkable freedom in choosing 

the initial guess and other auxiliary parameters. 

On the other hand, for q = 1, (2) leads 

( ;1) ( )
i i

x u xΘ =
� �

 (4) 

which together with (3) reveals that as q varies from 0 to 

1, or as the equation of consideration together with the 

corresponding solution are deformed -in a sense-, the 

solution of (2) varies from ,0 ( )iu x
�

 

to ( )iu x
�

. Hence, in 

order to proceed with HAM, it is necessary to find 

( ; )i x qΘ
�

. 

The deformation of ( ; )i x qΘ
�

 

corresponding to q 

increasing from 0 to 1 can be obtained entirely through 

(2). For this, first consider the Taylor series expansion of 

( ; )i x qΘ
�

 

with respect to q which in turn leads the 

Homotopy series given by 
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Moreover, appropriate selections of ,0 ( )iu x
�

, � and £, 

yields a convergent series for q = 1 [6]-[11], i.e. 
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The series above is one of the solutions of the original 

set of equations as proved in [6] which also contains a 

thorough discussion of the method. Hence, in order to ob-

tain a series solution for (1), it is sufficient to determine 

the , ( )i mu x
�

 

terms in (7). 

In order to do this, HAM considers the mth order defor-

mation equation, and the fundamental recursion of the 

method is obtained by m consecutive differentiation of (2) 

as follows: 
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where 
i

R  and 
m

χ  are given by 
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respectively. 

Utilizing this recursion, it is possible to find , ( )i mu x
�

s 

and hence a solution to the original set of equations 

through the recursion implied by (8). 

III. APPLICATION TO THE ONE GROUP NEUTRON DIFFUSION 

EQUATIONS 

The neutron diffusion equation for a homogenous reac-

tor regarding a geometry where the vacuum boundary 

conditions are valid is given by 

( ) ( )2 2 S(r )
r r ,     r V

D
φ κ φ∇ − = − ∈

�
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 (11) 
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where ( )rφ
�

 is the neutron flux and ( )S r
�

 is the neutron 

source. Σ a

 

is given in terms of the absorption cross sec-

tion and the diffusion constant D by inverse diffusion 

length 2 /κ Σ= a D . In one group criticality eigenvalue 

problems, the source term named fission source is 

/f effS DkνΣ=  

We consider the one group neutron diffusion equation 

for a two dimensional system with a square geometry. 

Since the system is symmetric with respect to both the x 

and y axes, we utilize HAM for only a single quadrant. For 

the case, the neutron diffusion equation together with the 

boundary conditions given by (11) reduces to 
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It is possible to rewrite the above through an operator 

notation in similar form with that of (1), and achieve 

( )[ ], 0N x yφ =  (13) 

2 2

2 2

2

x x
N χ

∂ ∂
+

∂ ∂
= +  (14) 

where 

2 f r

eff
Dk D

ν
χ

Σ Σ
−=  (15) 

Hence, the zero-order deformation equation for the one 

group neutron equation is obtained as 

[ ] [ ]{ }0
(1 )£ ( , ; ) ( , ) ( , ; )q x y q x y q N x y qφ− Θ − = Θ�  (16) 

It is apparent that, the initial guess 
0
( , )x yφ  and the aux-

iliary linear operator £ should be determined first in (16). 
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Considering the type of the one group neutron diffusion 

equation and the boundary conditions, we consider an ini-

tial guess in the form 

( )o n n

n 0

x, y b Cos( y)φ β
∞

=

=∑  (17) 

In order to have the presumption in (16) satisfy the 

boundary conditions, we substitute the condition for y = a 

yielding that 
nβ  satisfies 

(2 1)
0,1, 2, ....

2
n

n
n

a

π
β

+
= =  (18) 

Regarding the selection of the auxiliary linear operator 

£, it is apparent that N given by (16) is a good candidate 

and hence 

2

2
£

x

∂
=

∂
 (19) 

We obtain the HAM recursion through m consecutive 

differentiation of the corresponding zero-order deforma-

tion equation, i.e. (16), as 
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for m > 0. The Rm term above is obtained through (9) and 

(14) as 
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It is possible to exploit (21) in order to utilize the recur-

sion given by (20) through software packages that feature 

symbolic programming such as Mathematica and Matlab.  

On the other hand, consider a few terms of the series 

given by 
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where 
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Consider the partial sum of a few terms of the series 

given by  
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Applying (23) boundary condition at x=a, 
n

α is obtained 

(2 1)
0,1, 2,....

2
n

n
n

a

π
α

+
= =

�
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For a critical reactor, all the harmonics drop out and it is 

sufficient to consider the fundamental eigenvalue [14]-

[16]. Therefore, the fundamental eigenvalue and eigen-

function given by  

0

2a

π
α =

�
 (25) 

( ) ( )0 0 0x, y b Cos y Cos( x)φ β α= �  

and multiplication factor keff using (15), (18) and (25) 
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is obtained.  

Notice that � enables the control of the convergence of the 

series sum. It cancels out in (25) and the series sum 

converges for all values of �  for the problem of concern. 

In order to determine the coefficient b0 we consider the 

fact that in nuclear reactors, reactor power is determined 

by the following equation [16] 

( )
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IV. EXAMPLE 

In this example, we consider a square reactor core with 

edge length 2a = 100 cm and apply HAM for one quadrant 

of the system which is sufficient owing to the symmetric-

ity. Notice that the vacuum conditions at the left and upper 

boundaries together with the reflector conditions at the 

right and lower boundaries are as expressed in (12). The 

constants of the reactor are presented in Table 1. 

Table 1 – Reactor constants. 

Constant Value 

a  (cm) 50 

D  (cm) 1.77764 

aΣ  (cm
-1

)

 
0.0143676 

fνΣ  (cm
-1

)

 
0.0262173 

fΣ  (cm
-1

)

 
0.0104869 

P  (watt.cm
-1

)

 
32000 

fw  (joule) 3.2042x10
-11

 

For the case, we consider the result obtained via separa-

tion of variables as the exact solution. Computations em-

ploying Mathematica yield that HAM converges to the 

exact solution. We present the computational results of 

HAM on a 100x100 grid in Figure 1 and on y=0 in Figure 

2. In addition, in Table 2, we present the computational 

results of HAM and SoV in a comparative manner. 

 

Figure 1 – Neutron flux distribution. 
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Figure 2 – Neutron flux for y=0. 

 

Table 2 –  Compared results. 

 HAM SoV 

keff 1.46657782 1.46657782 

φ0 2.34976x10
13

 2.34976x10
13

 

V. CONCLUSION 

In this work, we solve the one group neutron diffusion 

equations for multpliying media using the Homotopy 

Analysis Method. We calculate the eigenvalues, eigen-

functions and the largest eigenvalue named multiplication 

factor keff . The computational results indicate that the it-

erative approach of HAM converges to the true result pro-

vided by the widely used analytic method of SoV. This 

also holds when HAM is applied for the fixed source neu-

tron diffusion equations for which case the HAM produces 

the result in a rather straightforward manner compared to 

that of the SoV approach which is yield through tedious 

algebraic manipulations of complicated mathematical ex-

pressions [13]. Similarly, for the problem of concern, we 

have obtained a simple iteration using HAM. We believe 

that these results are promising in that they provide a 

strong motivation for exploiting HAM in multigroup 

and/or multiregion neutron diffusion equations: In both 

cases, the existence of distinct regions and/or energy 

groups yield differing diffusion constants which in turn 

render a solution through convention approaches not pos-

sible, in general. It is our expectation that HAM would 

provide advantages in such scenarios and its further elabo-

ration remains as future work. 
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