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Abstract

A finite element-boundary element hybrid method has been developed for one or two group

neutron diffusion calculations. A linear or bilinear finite element formulation for the reactor

core and a linear boundary element technique for the reflector which are combined through

interface continuity conditions constitute the basis of the developed method. The present

formulation is restricted to two-dimensional geometries and has been implemented in the

developed computer program. Via comparisons with analytical solutions, the proposed

method has been validated. Further comparisons against the pure finite and boundary element

formulations show that the proposed method constitutes a viable alternative for the numerical

solution of neutron diffusion problems of both the external neutron source and multiplication

eigenvalue determination variety.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The finite element method (FEM) is a well-established method in applied math-

ematics and engineering. It is preferred in most applications to its principal alter-

native, the finite difference method (FDM), due to its flexibility in the treatment of

curved or irregular geometries and the high rates of convergence attainable by the

use of high order elements. The first prototype engineering application of FEM was
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in the field structural engineering and dates back to 1956 (Turner et al., 1956). A very

early variational finite element type solution procedure using the principle of mini-

mum potential energy and linear triangular elements was seen in the field of applied

mathematics (Courant, 1943). Starting from 1960s the applied mathematics and

engineering streams of development have started to converge and FEM became a

most extensively used technique in almost every branch of engineering and mathe-
matical physics. The first application of FEM to the theory of neutron diffusion

dates back to 1970s. The developments in the application FEM to the neutron dif-

fusion and even-parity transport equations have been described in the excellent

treatise of Lewis (1981).

The boundary element method (BEM) is a newer method compared to FEM. It is

based upon the conversion of the governing differential equation into a boundary

integral equation (BIE) via Green’s second identity and infinite medium Green’s

functions (fundamental solutions). Since the resulting BIE involves unknowns only
on the system boundary, the dimension of the problem is almost reduced by one.

Although it is possible to trace back a formal presentation of the basic ideas of BEM

to the works of the Russian author Mikhlin (1965), it is generally accepted (Brebbia

et al., 1984), that at least ‘‘direct’’ BEM originated in the work of Cruse and Rizzo

(1968). The expansion of the use of BEM to different fields of engineering and

mathematical physics has been especially faster after the use of the term ‘‘Boundary

Element’’ in a textbook (Brebbia, 1978). The first application of BEM to the neutron

diffusion equation dates back to middle 1980s (Itagaki, 1985). Further research in the
application of BEM to the neutron diffusion equation concentrated on preserving the

‘‘boundary only’’ philosophy of BEM by converting the scattering volume integrals

(Ozgener, 1998) and external neutron source volume integrals (Ozgener and Oz-

gener, 1994) into surface integrals.

Recent investigations in the application of BEM to the neutron diffusion

equation concentrated on the solution of multi-region problems. In BEM formu-

lations developed for the solution of multiregion problems, two distinct approaches

have been taken. In the approach which might be referred as the classical BEM
approach, the BEM equations for each of the homogeneous regions in the system

are assembled together in a block matrix form using the concept of the ‘‘virtual

side’’ and the continuity of the flux and current across material interfaces (Ozgener

and Ozgener, 2001). Although group-to-group scattering domain integrals are re-

duced to boundary integrals via a recently developed BIE (Ozgener, 1998), fission

source domain integrals have still to be evaluated and the determination of the

effective multiplication factor (keff ) proceeds through the classical fission source

iteration procedure of nuclear reactor analysis. The second approach which might
be referred as the domain decomposition BEM proceeds without utilizing the fis-

sion source iteration procedure and is based on the domain decomposition method.

The most important advantage of this approach is the elimination of both group-

to-group scattering and fission source domain integrals. Domain decomposition

BEM is based on the diagonalization of the k-estimate dependent infinite me-

dium matrix of each homogeneous region, by a similarity transformation. By this

process, the multiregion diffusion equations for each homogeneous region is
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transformed into a set of homogenous or nonhomogeneous (if there is an external

source) equations which are either of the Helmholtz or modified Helmholtz type,

depending on the sign of the eigenvalues of the infinite medium matrix. There are

two variants of the domain decomposition BEM. In the first variant which is called

the hierarchical domain decomposition boundary element method (HDD-BEM)

(Purwadi et al., 1998), a two-level calculation procedure is employed. At the lower
level, the Helmholtz (or modified Helmholtz) type mode equations are solved by

constant BEM for each homogeneous region using estimates of the multiplication

factor and nodal values of the mode functions. At the higher level, the multipli-

cation factor and nodal values of the mode functions assumed at interfaces are

modified by Newton’s method to satisfy the continuity conditions for the neutron

flux and current at interfaces. The computational performance of the original

HDD-BEM has been enhanced by using higher-order boundary elements instead

of constant ones in 2-D calculations (Chiba et al., 2001a). The optimization of the
computational performance of the HDD-BEM has also been one of the main

concerns of this work. The HDD-BEM has recently been extended to 3-D-prob-

lems (Chiba et al., 2001b). The second variant of the domain decomposition BEM

is called the response matrix boundary element method (RM-BEM) (Maiani and

Montagnini, 1999). RM-BEM depends also on domain decomposition and em-

ploys a two-level hierarchical procedure like HDD-BEM. In RM-BEM, the BIE’s

of each homogeneous region are expressed in terms of inward and outward partial

current currents at the region boundaries. The response matrix (RM) of each re-
gion relates the outward partial current to the inward partial current. The partial

currents are determined using an iterative method.

FEM and BEM have both advantages and disadvantages relative to each other.

Since BEM restricts the unknowns to region boundaries, the linear system di-

mensions resulting from BEM discretization are greatly reduced relative to FEM

discretization. But the full and nonsymmetric nature of the coefficient matrix of

BEM is clearly a disadvantage relative to the symmetric, sparse and positive-def-

inite FEM coefficient matrix. Since the emergence of FEM and BEM as numerical
solution techniques, many researchers in different areas of engineering and math-

ematical physics tried to combine FEM and BEM in the solution of their problems

in order to exploit the advantages of both methods. Such FE/BE combined

methods are usually termed as hybrid methods. The first hybrid FE/BE formula-

tion was first suggested by Zienkiewicz et al. (1977). Since that time, many variants

of FE/BE hybrid formulations have been proposed in various branches of engi-

neering (Brebbia and Georgios, 1979). Many recent research efforts Guven and

Madenci (2003), Pascal et al. (2003) and Gail et al. (2002) involve hybrid FE/BE
formulations which take specific physical characteristics of the analyzed systems

into account. Although both FEM and BEM have been separately applied in the

field of neutron diffusion, a hybrid FE/BE formulation has not been suggested. In

this paper, we’ll propose a hybrid FE/BE formulation for two region reflected

systems using the classical approach without resorting to domain decomposition

procedures. Such a hybrid FE/BE method, using a FEM formulation in the core

and a BEM formulation in the reflector seems attractive for two reasons. For one
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thing, FEM has proved itself to be a very efficient discretization method especially

in regions where neutron sources are present like a reactor core. For another, BEM

is very efficient especially in regions like reflectors where no fission neutron sources

are present. No internal mesh is necessary even if domain decomposition methods

are not employed. The FE/BE hybrid formulation we’ll develop in this paper is

directed towards nuclear systems consisting of the core and reflector regions. The
development will be within the context of group diffusion theory restricted to one

or two groups. The validation of the developed method will be carried out by

comparison with analytical solutions. Although the relative merit of the suggested

method will be assessed via comparisons with pure BEM and FEM solutions,

optimization of the computational performance of the suggested technique is not

among our aims in this work.
2. Formulation

2.1. Governing equations

We consider a nuclear system consisting of a nuclear reactor core (C) and a re-

flector, (R). The volume and outer surface of the core and reflector are denoted by V k

and Sk where k ¼ C or R. The core-reflector interface (I) is denoted by SI. We assume

that the core and reflector outer surface may consist of two nonoverlapping parts; a
part over which vacuum boundary conditions (v) prevail and another part over

which reflection boundary condition (r) is prescribed. Thus SC ¼ SC
v [ SC

r and

SR ¼ SR
v [ SR

r . A picture of the described nuclear system is presented in Fig. 1. If we

let the energy group index g be 1 or 2, corresponding to first and second energy

groups, the two-group diffusion equations can be written generally as
�Dj
gr2Ugð~rÞ þ Rj

r;gUgð~rÞ ¼ sg ~r
� �

; ~r 2 V j; j ¼ C or R; ð1Þ
C
rS

CV

R
vS

C
vS

RV
IS

R
rS

Fig. 1. Nuclear system consisting of the core and the reflector.
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Dj
g, R

j
r;g and sjgð~rÞ represent the group diffusion constant, the group removal cross

section and group neutron source of the core (j ¼ C) or the reflector (j ¼ R). Ugð~rÞ is
the g0th group neutron flux. Before FEM or BEM discretization, (1) is usually cast

into the form:
r2Ugð~rÞ � kjg
� �2

Ugð~rÞ ¼ �
sgð~rÞ
Dj

g
; ~r 2 V j; j ¼ C or R; ð2Þ
where the inverse diffusion length is defined as
kjg ¼

ffiffiffiffiffiffiffiffi
Rj

r;g

Dj
g

s
: ð3Þ
Both the FEM formulation for the core and BEM formulation for the reflector is

based on the definition of the residual function:
Rj
gð~rÞ ¼ r2/gð~rÞ � kjg

� �2

/gð~rÞ þ
sjgð~rÞ
Dj

g
; ~r 2 V j; j ¼ C or R; ð4Þ
where /gð~rÞ is some approximation to Ugð~rÞ. The residual is identically equal to zero
when /gð~rÞ ¼ Ugð~rÞ, the actual neutron flux. Both BEM and FEM are based on the

requirement that at least the weighted integral of the residual function Rj
gð~rÞ over the

system volume vanish for /gð~rÞ, some approximation to Ugð~rÞ, with some prede-

termined space of weight functions; wð~rÞ:
Z
V j
wð~rÞRj

gð~rÞdV ¼ 0; g ¼ 1; 2; j ¼ C or R: ð5Þ
Different choices for the weight function, wð~rÞ and the approximation to the

neutron flux, /gð~rÞ, lead to different BEM and FEM formulations.

In the formulation for the core, (5) is in the form:
Z
V C

wð~rÞ r2/gð~rÞ
"

� kCg
� �2

/gð~rÞ þ
sgð~rÞ
DC

g

#
dV ¼ 0: ð6Þ
For arriving at the equation which forms the basis of FEM formulation, we apply

Green’s First Identity to the first term of (6) to obtain:
Z
V C

~rwð~rÞ �~r/gð~rÞ
"

þ kCg
� �2

wð~rÞ/gð~rÞ�wð~rÞsgð~rÞ
DC

g

#
dV �

Z
~SC
wð~rÞ

o/g

on
ð~rÞdS¼ 0;

ð7Þ
where ~Sj ¼ Sj [ SI; j ¼ C or R and n is the outward normal direction at any point on
~Sj. If we express the normal derivative in terms of the component of the group g
neutron current ~Jgð~rÞ as
Jgð~rÞ ¼ �Dj
g

o/g

on
ð~rÞ; ~r 2 ~Sj ð8Þ
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and apply the reflection boundary condition:
Jgð~rÞ ¼ 0; ~r 2 Sj
r ; j ¼ C or R ð9Þ
and the vacuum boundary condition:
1
4
/gð~rÞ � 1

2
Jgð~rÞ ¼ 0; ~r 2 Sj

v; j ¼ C or R; ð10Þ
(7) becomes:
Z
V C

~rwð~rÞ � ~r/gð~rÞ
"

þ kCg
� �2

wð~rÞ/gð~rÞ � wð~rÞ sgð~rÞ
DC

g

#
dV þ 1

2DC
g

�
Z
SCv

wð~rÞ/gð~rÞdS þ
1

DC
g

Z
SI
wð~rÞJgð~rÞdS ¼ 0; ð11Þ
(11) constitutes the starting point for the FEM discretization of the reactor core.

In the formulation for the reflector, (5) is in the form:
Z
V R

wð~rÞ r2/gð~rÞ
"

� kRg
� �2

/gð~rÞ þ
sgð~rÞ
DR

g

#
dV ¼ 0: ð12Þ
For arriving at the equation which forms the basis of the BEM formulation, we

apply Green’s Second Identity to the first term of (12) to obtain:
Z
V R

/gð~rÞ r2wð~rÞ
"

� kRg
� �2

wð~rÞ þ wð~rÞsgð~rÞ
DR

g

#
dV þ

Z
~SR
wð~rÞ

o/g

on
ð~rÞdS

�
Z
~SR
/gð~rÞ

ow
on
ð~rÞdS ¼ 0: ð13Þ
Applying (8)–(10); (13) is cast into the form:
Z
V R

/gð~rÞ r2wð~rÞ
"

� kRg
� �2

wð~rÞ þ wð~rÞsgð~rÞ
DR

g

#
dV �

Z
SI

wð~rÞ
DR

g

Jgð~rÞ
"

þ /gð~rÞ
ow
on
ð~rÞ

#
dS �

Z
SRv

/gð~rÞ
wð~rÞ
2DR

g

"
þ ow

on
ð~rÞ

#
dS �

Z
SRr

/gð~rÞ
ow
on
ð~rÞdS ¼ 0:

ð14Þ
Eq. (14) constitutes the starting point for the BEM discretization of the reflector.
2.2. FEM discretization of the reactor core

For the FEM discretization of the reactor core, we assume a 2-D model and

introduce a mesh of linear triangular or bilinear quadrilateral mesh of finite elements

over the reactor core as shown in Fig. 2. The nodes which are not on the core-re-

flector interface are called non-interface nodes and are numbered from j ¼ 1 to NC.
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C
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k

2 
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j
j-1

V

Fig. 2. Finite element mesh for the core.
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On the other hand, the nodes on the core-reflector interface are numbered separately

from k ¼ 1 to NI. The piecewise linear or bilinear finite element trial function be-
longing to non-interface nodes j and interface nodes k are denoted by hCj ð~rÞðj ¼
1; . . . ;NCÞ and hIkð~rÞðk ¼ 1; . . . ;NIÞ respectively. We express both the weight func-

tion, wð~rÞ, and the approximation to the group flux, /gð~rÞ in (11) in terms of the

finite element trial functions as
wð~rÞ ¼ wC
� �T

hCð~rÞ þ wI
� �T

hIð~rÞ; ð15Þ

/gð~rÞ ¼ /C

g

� �T

hCð~rÞ þ /I

g

� �T

hIð~rÞ; ð16Þ
where the NC dimensional vectors wC;/C

g
and NI dimensional vectors wI;/I

g
contain

the function values at the nodes as their elements. We also assume a linear variation

of current over the core-reflector interface and write:
Jgð~rÞ ¼ J I
g

� �T

hIð~rÞ; ~r 2 SI: ð17Þ
When we substitute (15)–(17) into (11), we obtain:
wC
� �T

AC

g
/C

g

h
þ ACI

g
/I

g
� qC

g

i
þ wI
� �T

AI

g
/I

g

�
þ AIJ

g
J I
g þ ACI

g

� �T

/C

g
� qI

g

�
¼ 0:

ð18Þ
The NC � NC square matrix AC

g
, NC � NI rectangular matrix ACI

g
, and the two

NI � NI square matrices AI

g
and AIJ

g
are defined below:Z � 	
AC

g
¼

V C

~rhCð~rÞ � ~r hCð~rÞ
h iT

þ kCg
� �2

hCð~rÞ hCð~rÞ
h iT

dV þ 1

2DC
g

�
Z
SCv

hCð~rÞ hCð~rÞ
h iT

dS; ð19Þ
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ACI

g
¼

Z
V C

~rhCð~rÞ � ~r hIð~rÞ
h iT�

þ kCg
� �2

hCð~rÞ hIð~rÞ
h iT	

dV þ 1

2DC
g

�
Z
SCv

hCð~rÞ hIð~rÞ
h iT

dS; ð20Þ

AI

g
¼

Z
V C

~rhIð~rÞ � ~r hIð~rÞ
h iT�

þ kCg
� �2

hIð~rÞ hIð~rÞ
h iT	

dV ; ð21Þ

AIJ

g
¼ 1

DC
g

Z
V C

hIð~rÞ hIð~rÞ
h iT

dV : ð22Þ
The NC dimensional vector qC
g
and NI dimensional vector qI

g
are defined as
qC
g
¼ 1

DC
g

Z
V C

sgð~rÞhCð~rÞdV ; ð23Þ

qI
g
¼ 1

DC
g

Z
V C

sgð~rÞhIð~rÞdV : ð24Þ
For (18) to vanish for arbitrary wC and wI we must have:
AC

g
/C

g
þ ACI

g
/I

g
¼ qC

g
; ð25Þ

ACI

g

� �T

/C

g
þ AI

g
/I

g
þ AIJ

g
J I
g ¼ qI

g
: ð26Þ
The matrices AC

g
and AI

g
are symmetric and sparse due to the compact support of

finite element trial functions.

The group source sgð~rÞ consists of the fission/external source and the scattering

source for g ¼ 2. If we are using two-group theory, we can write:
sgð~rÞ ¼
vg
k

X2

g0¼1
tRC

f ;g0/g0 ð~rÞ þ Qgð~rÞ þ dg;2R
C
s;2 1/1ð~rÞ; ð27Þ
where vg and tRC
f;g represent the group fission spectrum fraction and the fission yield

cross section of the core respectively. k is the latest estimate for the system effective

multiplication factor (keff ) during fission source iteration. Qgð~rÞ is the group external

neutron source. RC
s;2 1 is the scattering cross section from group 1 to group 2 of the

core. Since we solve either fission source iteration or external source problems, either

the first or the second term on the right hand side of (27) is present, but not both. If

we use the FEM expansion (16) in (27) and then insert the resulting expression into

(23) and (24) (thus employ the ‘‘consistent source approximation’’ (Ozgener, 1990)),

we obtain:
qC
g
¼ 1

k

X2

g0¼1
F C

g g0
/C

g0

h
þ F CI

g g0
/I

g0

i
þ SC

g þ dg;2 SC

2 1
/C

1

h
þ SCI

2 1
/I

1

i
; ð28Þ
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qI
g
¼ 1

k

X2

g0¼1
F CI

g g0

� �T

/C

g0

�
þ F I

g g0
/I

g0

�
þ SI

g þ dg;2 SCI

2 1

� �T

/C

1

�
þ SI

2 1
/I

1

�
; ð29Þ
where the NC � NC square matrices:
F C

g g0
¼

vgtR
C
f;g0

DC
g

Z
V C

hCð~rÞ hCð~rÞ
h iT

dV ; ð30Þ

SC

2 1
¼

RC
s;2 1

DC
1

Z
V C

hCð~rÞ hCð~rÞ
h iT

dV ð31Þ
are defined as above and have the same structure as AC

g
. The NC � NI rectangular

matrices which have the same structure as ACI

g
are:
F CI

g g0
¼

vgtR
C
f;g0

DC
g

Z
V C

hCð~rÞ hIð~rÞ
h iT

dV ; ð32Þ

SCI

2 1
¼

RC
s;2 1

DC
1

Z
V C

hCð~rÞ hIð~rÞ
h iT

dV : ð33Þ
We have also the NI � NI square matrices:
F I

g g0
¼

vgtR
C
f;g0

DC
g

Z
V C

hIð~rÞ hIð~rÞ
h iT

dV ; ð34Þ

SI

2 1
¼

RC
s;2 1

DC
1

Z
V C

hIð~rÞ hIð~rÞ
h iT

dV ; ð35Þ
which have the same structure as AI

g
. The NC and NI dimensional external source

vectors are defined as
SC
g ¼

1

DC
g

Z
V C

Qgð~rÞhCð~rÞdV ; ð36Þ

SI
g ¼

1

DC
g

Z
V C

Qgð~rÞhIð~rÞdV : ð37Þ
Finally, our FEM discretization of the core ends up with the following matricial

equations which are obtained by combining (25), (26), (28) and (29) in the block
matrix form:
AC

g
ACI

g
0

ACI

g

� �T

AI

g
AIJ

g

2
4

3
5 /C

g

/I

g

J I
g

2
664

3
775 ¼ 1

k

X2

g0¼1

F C

g g0
F CI

g g0
0

F CI

g g0

� �T

F I

g g0
0

2
4

3
5 /C

g0

/I

g0

J I
g0

2
664

3
775

8>><
>>:

9>>=
>>;

þ
SC
g

SI
g

" #
þ dg;2

SC

2 1
SCI

2 1
0

SCI

2 1

� �T

SI

2 1
0

2
4

3
5 /C

1

/I

1

J I
1

2
64

3
75:
ð38Þ
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In case of external source problems, the first term on the right-hand side of (38)

does not exist. On the other hand, during the fission source iteration of the multi-

plication eigenvalue determination problems, the second term on the right side of

(38) vanishes. In either case, (38) represents a linear algebraic system with NC þ 2NI

unknowns but only NC þ NI equations. Thus a unique solution of (38) would be

possible only by augmenting it with a linear system resulting from a BEM discret-
ization of the reflector region.
2.3. BEM discretization of the reflector

For the BEM discretization of the reflector, we divide the boundary of the

reflector into a linear boundary element mesh. The nodes which are not on the

core-reflector interface are numbered from i ¼ 1 to i ¼ NR. On the other hand,

the nodes which are on the core-reflector interface are chosen so that they co-
incide with those on the core (FEM) side. Thus we have exactly NI nodes on the

interface, numbered from k ¼ 1 to k ¼ NI identical to the numbering on the FEM

side (see Fig. 3). BEM discretization is based on the choice of the weight function

wð~rÞ in (14) either as the fundamental solution Ggð~r;~qR;iÞði ¼ 1; . . . ;NRÞ of the

equation:
r2Gg ~r;~qR;i

� �
� kRg
� �2

Gg ~r;~qR;i

� �
¼ �d ~r

�
�~qR;i

�
ð39Þ
or as the fundamental solution Ggð~r;~qI;kÞðk ¼ 1; . . . ;NIÞ of the equation:
r2Gg ~r;~qI;k

� �
� kRg
� �2

Gg ~r;~qI;k

� �
¼ �d ~r

�
�~qI;k

�
; ð40Þ
i 

R
rS

R
vS

RV

IS

IN RN

k 

2 i=1 k=1 

i+1 

Fig. 3. Boundary element mesh for the reflector.
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where ~qR;i and ~qI;k are the position vectors of the nodes on the non-interface

boundary and interface boundary of the reflector respectively. If we take the weight

function in (14) as the fundamental solution of (39) and use the integration property

of the Dirac delta function, we obtain (Ozgener and Ozgener, 1993):
c ~qR;i

� �
/g ~qR;i

� �
þ
Z
SRr

/gð~rÞ
oGg

on
~r;~qR;i

� �
dS þ

Z
SRv

/gð~rÞ
Gg ~r;~qR;i

� �
2DR

g

2
4

þ oGg

on
~r;~qR;i

� �35dS þ Z
SI

/gð~rÞ
oGg

on
~r;~qR;i

� �2
4 þ

Gg ~r;~qR;i

� �
2DR

g

Jgð~rÞ

3
5dS

¼ Sg ~qR;i

� �
i ¼ 1; . . . ;NR; ð41Þ
where
c ~qR;i

� �
¼

h ~qR;i

� �
2p

; ð42Þ
with hð~qR;iÞ being the subtended internal angle in radians at the node i. The right-

hand side of (41) is given by the volume integral:
Sg ~qR;i

� �
¼

Z
V R

Gg ~r;~qR;i

� �
sgð~rÞ

DR
g

dV : ð43Þ
On the other hand, if we take the weight function in (14) as the fundamental

solution of (40) and use the integration property of the Dirac delta function,

equations similar to (41)–(43) can be written for the nodes on the core-reflector in-

terface by simply replacing the subscripts ‘‘R; i’’ by ‘‘I; k’’ and ‘‘i ¼ 1; . . . ;NR’’ by

‘‘k ¼ 1; . . . ;NI’’ in those equations. Since there is no fission source in the reflector

and we assume that there is no external neutron source, the only term contributing to

the group source term, sgð~rÞ in (43) is the scattering source. Since there can be no in-
scattering source for the first group, we have:
sgð~rÞ ¼
0; g ¼ 1;
RR

s;2 1/1ð~rÞ; g ¼ 2;

�
ð44Þ
where RR
s;2 1 is group 1 to group 2 scattering cross section of the reflector. Thus:
S1 ~qR;i

� �
¼ 0 i ¼ 1; . . . ;NR: ð45Þ
Hence, for g ¼ 1, (41) becomes a boundary integral equation (BIE), an integral

equation with unknowns only on the reflector boundary. For the second group, the

right hand side of (41) could be converted into an expression involving only surface

integrals (Ozgener, 1998):
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S2 qR;i

� �
¼ s21 c ~qR;i

� �
/1 ~qR;i

� �8<
: þ

Z
SRr

/1ð~rÞ
oG2

on
~r;~qR;i

� �
dS

þ
Z
SRv

/1ð~rÞ
G2 ~r;~qR;i

� �
2DR

1

2
4 þ oG2

on
~r;~qR;i

� �35dS

þ
Z
SI

/1ð~rÞ
oG2

on
~r;~qR;i

� �2
4 þ

G2 ~r;~qR;i

� �
DR

1

J1ð~rÞ

3
5dS

9=
; i ¼ 1; . . . ;NR;

ð46Þ
where the group coupling coefficient is
s21 ¼
RR

s;2 1

DR
2 kR2ð Þ

2 � kR1ð Þ
2

h i : ð47Þ
Equations similar to (45) and (46) are also valid for the nodes on the core-reflector
interface. For writing these equations, replacing ‘‘R; i’’ by ‘‘I; k’’ and ‘‘i ¼ 1; . . . ;NR’’

by ‘‘k ¼ 1; . . . ;NI’’ in (45)–(47) will suffice. With (46) inserted into the right-hand side

of (41), the second group equation also becomes a BIE. With no volume integrations

due to scattering source, the ‘‘boundary only’’ philosophy of BEM is preserved in the

reflector equations. Thus, no reflector internal mesh is necessary in the present

formulation. Consequently, the first group BIE is
c ~qR;i

� �
/1 ~qR;i

� �
þ
Z
SRr

/1ð~rÞ
oG1

on
~r;~qR;i

� �
dSþ

Z
SRv

/1ð~rÞ
G1 ~r;~qR;i

� �
2DR

1

2
4 þoG1

on
~r;~qR;i

� �35dS

þ
Z
SI

/1ð~rÞ
oG1

on
~r;~qR;i

� �2
4 þ

G1 ~r;~qR;i

� �
DR

1

J1ð~rÞ

3
5dS¼ 0 i¼ 1; . . . ;NR:

ð48Þ
We have an equation in the same form as (48) for the interface nodes k ¼ 1; . . . ;NI.

The second group BIE is obtained by using (46) in (41) and can be written as
c ~qR;i

� �
/2 ~qR;i

� �
þ
Z
SRr

/2ð~rÞ
oG2

on
~r;~qR;i

� �
dS þ

Z
SRv

/2ð~rÞ
G2 ~r;~qR;i

� �
2DR

2

2
4

þ oG2

on
~r;~qR;i

� �35dS þ Z
SI

/2ð~rÞ
oG2

on
~r;~qR;i

� �2
4 þ

G2 ~r;~qR;i

� �
DR

2

J2ð~rÞ

3
5dS
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¼ s21 c ~qR;i

� �
/1 ~qR;i

� �8<
: þ

Z
SRr

/1ð~rÞ
oG2

on
~r;~qR;i

� �
dS

þ
Z
SRv

/1ð~rÞ
G2 ~r;~qR;i

� �
2DR

1

2
4 þ oG2

on
~r;~qR;i

� �35dS

þ
Z
SI

/1ð~rÞ
oG2

on
~r;~qR;i

� �2
4 þ

G2 ~r;~qR;i

� �
DR

1

J1ð~rÞ

3
5dS

9=
; i ¼ 1; . . . ;NR: ð49Þ
An equation similar to (49) can also be written for k ¼ 1; . . . ;NI. The BIE’s (48) and

(49) constitute the basic equations for the BEM discretization of the reflector

boundary. The linear boundary element trial functions belonging to non-interface

nodes i and interface nodes k are denoted by hRi ð~rÞ ði ¼ 1; . . . ;NRÞ and hIkð~rÞ ðk ¼
1; . . . ;NIÞ respectively. Due to the linearity assumption on both FEM and BEM

sides, the finite element and boundary element trial functions are identical on the

interface. Before expressing the approximations to the group flux, /gð~rÞ and current

Jgð~rÞ in (48) and (49), we note that nodes which reside at a junction of SR and SI

belong actually to both. But we have counted our junction nodes as interface nodes

when we numbered the nodes on the reflector boundary. But in the linear boundary

element approximation, the trial functions of such junction nodes also contribute to

the flux and current profile on the noninterface part of the reflector boundary. Thus,

we must express the approximation to the group flux on SR as
/gð~rÞ ¼ /R

g

� �T

hRð~rÞ þ /I

g

� �T

hIð~rÞ; ~r 2 SR ð50Þ
although the trial function of nonjunction interface nodes actually vanish on SR.

Here, the NR and NI dimensional vectors /R

g
and /I

g
contain the group flux values at

the nodes as their elements. On the other hand, the junction nodes are considered to

be part of SI. Thus, we write:
/gð~rÞ ¼ /I

g

� �T

hIð~rÞ; ~r 2 SI; ð51Þ
without any contribution from SR part of the reflector boundary. Since the flux is

continuous across the interface /I

g
vectors defined on the FEM and BEM sides are

identical. On the other hand, in both FEM and BEM formulations, the current at the

interface is defined as outward directed. But the outward direction for the BEM side

is the inward direction for the FEM side. Thus to be consistent with (17) of the FEM

formulation and using the continuity of the normal component of current we write:
Jgð~rÞ ¼ � J I
g

� �T

hIð~rÞ; ~r 2 SI; ð52Þ
so that J I
g represent the current component in the normal direction from the core to

the reflector. If we substitute (50)–(52) into the group BIE’s of (48) and (49) for non-

interface nodes, we obtain the matricial equations:



1568 S. Cavdar, H.A. Ozgener / Annals of Nuclear Energy 31 (2004) 1555–1582
bR1;i
� �T

/R

1
þ bRI

1;i

� �T

/I

1
þ bRJ

1;i

� �T

J I
1 ¼ 0; i ¼ 1; . . . ;NR ð53Þ
and
bR2;i
� �T

/R

2
þ bRI

2;i

� �T

/I

2
þ bRJ

2;i

� �T

J I
2 ¼ s21 bR2;i

� �T

/R

1

�
þ bRI

2;i

� �T

/I

1

þ bRJ
2;i

� �T

J I
1

�
; i ¼ 1; . . . ;NR; ð54Þ
where
bRg;i¼ ciþ
Z
SR
hRð~rÞoGg

on
~r;~qR;i

� �
dSþ 1

2DR
g

Z
SRv

hRð~rÞGg ~r;~qR;i

� �
dS; i¼ 1; . . . ;NR;

ð55Þ

bRI
g;i ¼

Z
~SR
hIð~rÞ oGg

on
~r;~qR;i

� �
dS þ 1

2DR
g

Z
SRv

hIð~rÞGg ~r;~qR;i

� �
dS; i ¼ 1; . . . ;NR;

ð56Þ

bRJ
g;i ¼ �

1

DR
g

Z
SI
hIð~rÞGg ~r;~qR;i

� �
dS; i ¼ 1; . . . ;NR ð57Þ
and
cið Þj ¼ di;jc ~qR;i

� �
; i ¼ 1; . . . ;NR: ð58Þ
Carrying out same steps for the group BIE’s of interface nodes, we obtain the

additional matricial equations:
bI1;k
� �T

/I

1
þ bIJ1;k
� �T

J I
1 þ bIR1;k

� �T

/R

1
¼ 0; k ¼ 1; . . . ;NI; ð59Þ

bI2;k
� �T

/I

2
þ bIJ2;k
� �T

J I
2 þ bIR2;k

� �T

/R

2
¼ s21 bI2;k

� �T

/I

1

�
þ bIJ2;k
� �T

J I
1

þ bIR2;k
� �T

/R

1

�
; k ¼ 1; . . . ;NI; ð60Þ
where
bIg;k ¼ ckþ
Z
~SR
hIð~rÞoGg

on
~r;~qI;k

� �
dSþ 1

2DR
g

Z
SRv

hIð~rÞGg ~r;~qI;k

� �
dS; k¼ 1; . . . ;NI;

ð61Þ

bIJg;k ¼ �
1

DR
g

Z
SI
hIð~rÞGg ~r;~qI;k

� �
dS; k ¼ 1; . . . ;NI; ð62Þ
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bIRg;k ¼
Z
SR

hRð~rÞ oGg

on
~r;~qI;k

� �
dS þ 1

2DR
g

Z
SRv

hRð~rÞGg ~r;~qI;k

� �
dS; k ¼ 1; . . . ;NI

ð63Þ
and
ckð Þj ¼ dk;jc ~qI;k

� �
; k ¼ 1; . . . ;NI: ð64Þ
Now we define the matrices BR

g
;BRI

g
and BRJ

g
as matrices whose rows consist of

ðbRg;iÞ
T
; ðbRI

g;iÞ
T
and ðbRJ

g;i Þ
T
for i ¼ 1; . . . ;NR respectively. Similarly we define the ma-

trices BI

g
;BIJ

g
and BIR

g
as matrices whose rows consist of ðbIg;kÞ

T
; ðbIJg;kÞ

T
and ðbIRg;kÞ

T
for

k ¼ 1; . . . ;NI, respectively. With these definitions (59) and (53) or (60) and (54) could

be combined to form the partitioned matrix equation:
BI

g
BIJ

g
BIR

g

BRI

g
BRJ

g
BR

g

" # /I

g

J I
g

/R

g

2
64

3
75 ¼ dg;2s21

BI

2
BIJ

2
BIR

2

BRI

2
BRJ

2
BR

2

" # /I

1

J I
1

/R

1

2
64

3
75 g ¼ 1; 2: ð65Þ
The number of unknowns in the linear system of (65) is 2NI þ NR; but the

number of equations is NI þ NR. The number of unknowns becomes equal to the

number of equations only if we combine (38) of FEM formulation with (65) of
BEM formulation to get a linear system with NC þ NR þ 2NI equations and un-

knowns. The combination of these equations will be discussed in the next sub-

section.
2.4. Combination of FEM and BEM equations

The FEM equations (38) and BEM equations (65) could be combined by defining

the (NC þ NR þ 2NI) dimensional square matrices:
M
g
¼

AC

g
ACI

g
0 0

ACI

g

� �T

AI

g
AIJ

g
0

0 BI

g
BIJ

g
BIR

g

0 BRI

g
BRJ

g
BR

g

2
66666664

3
77777775
; ð66Þ

F
g g0
¼

F C

g g0
F CI

g g0
0 0

F CI

g g0

� �T

F I

g g0
0 0

0 0 0 0

0 0 0 0

2
666664

3
777775; ð67Þ
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S
2 1
¼

SC

2 1
ACI

2 1
0 0

SCI

2 1

� �T

SI

2 1
0 0

0 s21BI

2
s21BIJ

2
s21BIR

2

0 s21BRI

2
s21BRJ

2
s21BR

2

2
66664

3
77775; ð68Þ
and (NC þ NR þ 2NI) dimensional vectors:
uTg ¼ /C

g

� �T

/I

g

� �T

J I
g

� �T

/R

g

� �T
� �

; ð69Þ

f T

g
¼ sCg

� �T

sIg
� �T

0 0

� �
: ð70Þ
The two-group equations can be written even more compactly, by defining the

block matrices:
M ¼ M
1

0

�S
2 1

M
2

� �
; ð71Þ

F ¼ F
1 1

F
1 2

F
2 1

F
2 2

� �
ð72Þ
and block-vectors:
uT ¼ uT1 uT2

 �

; ð73Þ

f T ¼ f T

1
f T

2

h i
: ð74Þ
With these definitions, the two-group external source problem is represented by
the matricial equation:
Mu ¼ f ; ð75Þ
which can be solved by solving the linear systems:
M
1
u1 ¼ f

1
; ð76Þ
and
M
2
u2 ¼ f

2
þ S

2 1
u1; ð77Þ
consecutively. For fission source iteration problems, we have to solve the linear

system:
MuðnÞ ¼ f ðnÞ; ð78Þ
at the n0th iteration, where:
f ðnÞ ¼ 1

k n�1ð Þ F u
n�1ð Þ; ð79Þ
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where kðn�1Þ and uðn�1Þ are known from the previous iteration. (78) can again be

solved by solving the counterparts of (76) and (77). For one group external source or

fission source iteration problems, the solution algorithm is shortened. The step given

in (77) is absent.
3. Implementation and validation

The developed FE/BE hybrid method is implemented in the FORTRAN program

NEDPCM. The program is capable of handling one and two group diffusion theory

problems of the external source and multiplication factor (keff ) determination vari-

ety. The program is developed and tested in PC environments under the MS

WINDOWS operating systems using the MS FORTRAN platform.

The first problem we consider is a one-group external neutron source problem
involving a bare system consisting of a square core of side length a surrounded by a

reflector of thickness b from the left and right but not from the top and bottom. Due

to the symmetry, only the upper right quadrant of the system is discretized. Re-

flection boundary conditions on the left and bottom sides of the upper right quad-

rant are utilized to impose the symmetry of the full system. Vacuum boundary

condition prevails naturally at the top and right sides of the bare system. A geo-

metrical description of the upper right quadrant of the system which is to be dis-

cretized is presented in Fig. 4. The governing one-group diffusion equations of the
core and reflector are:
F

�Dr2/ð~rÞ þ Ra/ð~rÞ ¼ s; ~r 2 V C; ð80Þ

�Dr2/ð~rÞ þ Ra/ð~rÞ ¼ 0; ~r 2 V R; ð81Þ

with the diffusion constant D and the absorption cross section Ra of the core and the

reflector taken equal for ease of analytical solution. A uniform external neutron

source of magnitude, s, is assumed to be present in the core. On the other hand, the

reflector is assumed to contain no external neutron source. Since there is only one

group, the group indices g in (1) are dropped in (80) and (81). Since the one-group

absorption cross section (Ra) is equal to the one-group removal cross section, Rr of

(1) is replaced by Ra in (80) and (81). Eqs. (80) and (81) have been solved analytically
y

0 

V Reflector 

a/2 

Core 

a/2 

R 

V 

x
  a/2+b R

ig. 4. Geometrical description of the upper-right quadrant of the partially reflected system.



1572 S. Cavdar, H.A. Ozgener / Annals of Nuclear Energy 31 (2004) 1555–1582
and the analytically derived expressions for the core and reflector average fluxes

denoted by �/C and �/R respectively, are presented below:
�/C ¼
sf ka=2ð Þ

Ra

1

�
þ sinh ba=2ð Þ

ba=2ð Þ g g; ba=2ð Þ
�
; ð82Þ

�/R ¼
sf ka=2ð Þ

Ra

1½ þ cosh ba=2ð Þg g; ba=2ð Þ�h a; b; t; bð Þ; ð83Þ
where the functions f , g, and h are defined as
f ka=2ð Þ ¼ 1� sinh ka=2ð Þ
ka=2ð Þ cosh ka=2ð Þ þ 2kD sinh ka=2ð Þ½ � ; ð84Þ

g g; ba=2ð Þ ¼ g
sinh ba=2ð Þ � g cosh ba=2ð Þ ; ð85Þ

h a;b;t;bð Þ¼cosh b a=2þbð Þ½ ��cosh ba=2ð Þ�t sinh b a=2þbð Þ½ ��sinh ba=2ð Þf g
bbð Þ sinh ba=2ð Þ�tcosh ba=2ð Þ½ � :

ð86Þ

The factor g and the coupling coefficient t are defined as
g ¼ cosh ba=2ð Þ � t sinh ba=2ð Þ
sinh ba=2ð Þ � t cosh ba=2ð Þ ; ð87Þ

t ¼ sinh b a=2þ bð Þ½ � þ 2bD cosh b a=2þ bð Þ½ �
cosh b a=2þ bð Þ½ � þ 2bD sinh b a=2þ bð Þ½ � : ð88Þ
The constant b has the definition:
b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ c2

p
; ð89Þ
where c is the smallest positive root of the transcendental equation:
c tan ca=2ð Þ ¼ 1

2D
: ð90Þ
The one-group external source problem has been run with various FE/BE hybrid

meshes using our program NEDPCM. In general, the core is divided into NxC and Ny

equal parts in the x and y-directions respectively so that a bilinear rectangular finite

element mesh with NxC � Ny elements is superimposed on the core. Such a mesh is

denoted as a NxC � Ny mesh for the core. With a NxC � Ny FEM mesh,

NC ¼ NxCðNy þ 1Þ and NI ¼ Ny þ 1. The reflector is divided into Ny linear boundary

elements on both the interface side and the right side which is parallel to the inter-

face. The bottom and top sides of the reflector is divided into NxR linear boundary
elements. Such a reflector BEM mesh is called a NxR � Ny mesh. For such a BEM

mesh NR ¼ 2NxR þ Ny � 1. A hybrid mesh consisting of a (NxC � Ny) FEM and

(NxR � Ny) BEM mesh with the associated node numbering system is presented in

Fig. 5 for the case NxC ¼ 2, Ny ¼ 3 and NxR ¼ 4.



Table 1

Average fluxes for the one-group external source problem

Hybrid mesh �/C (cm�1 s�1) �/R (cm�1 s�1) �/ (cm�1 s�1)

Core (FEM) Reflector (BEM)

2� 2 2� 2 6.62223 (3.12%) 1.50636 (28.8%) 2.50649 (10.07%)

5� 4 5� 4 6.81101 (0.36%) 1.23355 (5.47%) 2.32391 (2.05%)

10� 8 10� 8 6.83616 (0.01%) 1.18594 (1.40%) 2.29053 (0.59%)

20� 16 20� 16 6.84024 (0.07%) 1.17267 (0.27%) 2.28065 (0.15%)

Analytical 6.83531 1.16954 2.27717

j=3 

y

j=2 

k=10=NR k=9 k=8

k=1 k=2 k=3
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k=4 
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x

Fig. 5. The (2� 3) FEM, (4� 3) BEM hybrid mesh used by NEDPCM.
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NEDPCM runs have been made for this one group external source problem with

various hybrid meshes and the following data: D ¼ 1:77764 cm, Ra ¼ 0:0143676
cm�1, a=2 ¼ 4:86 cm, b ¼ 20 cm, s ¼ 1 neutron/(cm3 s). The average core flux �/C, the

average reflector flux, �/R and the average flux (�/ ¼ xC�/C þ xR�/R, where the volume

fractions are defined as xC ¼ a2=½aðaþ 2bÞ� and xR ¼ 1� xC) obtained with various

hybrid meshes along with their analytical values are presented in Table 1. The per

cent errors of various runs relative to the analytical values are also given in paren-

theses. The average fluxes are seen to converge to the analytical values as the meshes
are refined. The pointwise flux distributions along y ¼ 0, obtained both analytically

and numerically (20� 16 hybrid mesh) are presented in Fig. 6. The two graphs are

not discernable due to the high accuracy in the numerical solution.

The second problem we consider is again a one-group problem that involves

multiplication eigenvalue (keff ) determination. We assume again a bare system with

a square core of sidelength a and a reflector of thickness b surrounding the core

from left and right. Again, the upper-right quadrant of the system is properly

represented by Fig. 4. The governing one-group diffusion equation for the core and
reflector are:
�Dr2/ð~rÞ þ RC
a/ð~rÞ ¼

1

keff
tRC

f /ð~rÞ; ~r 2 V C; ð91Þ

�Dr2/ð~rÞ þ RR
a /ð~rÞ ¼ 0; ~r 2 V R: ð92Þ
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Fig. 6. Flux profile along y ¼ 0 for the one group external source problem.

1574 S. Cavdar, H.A. Ozgener / Annals of Nuclear Energy 31 (2004) 1555–1582
The diffusion constant of the core and reflector are taken equal to D for the ease

of analytical solution. The problem is to be solved for the largest eigenvalue, keff , and
the corresponding nonnegative eigenfunction, the neutron flux, /ð~rÞ. This problem is

solved numerically by fission source iteration in NEDPCM. This eigenvalue–eigen-

vector problem has been solved analytically and the multiplication eigenvalue (keff ) is
given by
keff ¼
ðtRC

f =R
C
a Þ

1þ B2
m=ðkCÞ

2
; ð93Þ
where
B2
m ¼ B2

x þ B2
y ; ð94Þ
By and Bx are the smallest positive roots of the transcendental equations:
By tan Bya=2
� �

¼ 1

2D
; ð95Þ

Bx tan Bxa=2ð Þ ¼ �b cosh ba=2ð Þ � t sinh ba=2ð Þ
sinh ba=2ð Þ � t cosh ba=2ð Þ ; ð96Þ
where
b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
y þ kRð Þ2

q
ð97Þ
and
t ¼ sinh b a=2þ bð Þ½ � þ 2bD cosh b a=2þ bð Þ½ �
cosh b a=2þ bð Þ½ � þ 2bD sinh b a=2þ bð Þ½ � : ð98Þ
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When the thermal power per unit distance of the nuclear system and the energy

released per fission are denoted by P 0 and wf respectively, the flux distribution is

analytically found as
/ x; yð Þ ¼

P 0BxBy

4wfR
C
f sin Bxa=2ð Þ sin Bya=2

� � cos Bxxð Þ cos Byy
� �

;

0 < x < a=2; 0 < y < a=2;
P 0BxBy

4wfR
C
f tan Bxa=2ð Þ sin Bya=2

� �
sinh ba=2ð Þ � t cosh ba=2ð Þ½ �

� 	
sinh bxð Þ � t cosh bxð Þ½ � cos Byy

� �� 

;

a=2 < x < a=2þ b; 0 < y < a=2:

8>>>>>>>><
>>>>>>>>:

ð99Þ

This problem is also solved by a finite element neutron diffusion program FEND

(Ozgener and Kabadayı, 1996). Finite element meshes used by FEND are also

represented by the notation ðNxC � NyÞ, ðNxR � NyÞ. The first parenthesis still pre-

serves its original meaning; the second parenthesis describes a bilinear rectangular
finite element mesh consisting of NxR � Ny elements superimposed on the reflector

region. An example of FEM mesh used by FEND is given in Fig. 7. While the FEM

mesh of Fig. 7 contains a total of 28 nodes (unknowns); its hybrid equivalent of Fig.

5 contains a total of 22 nodes; but 26 unknowns since each node on the interface has

two unknowns associated with it. For this problem, we have taken D ¼ 0:87 cm,

RC
a ¼ 0:01122 cm�1, RR

a ¼ 0:0033 cm�1, tRC
f ¼ 0:0230452 cm�1, RC

f ¼ 0:0921808
cm�1, a=2 ¼ 22:5 cm, b ¼ 20 cm. In Table 2, the keff values calculated by the pro-

grams NEDPCM (hybrid) and FEND (FEM) with various meshes are presented.
The number of unknowns (Ntot) (which is equal to the dimension of resulting linear

system) is also given for each mesh and method. The values in parenthesis under keff
values give the per cent error relative to the analytical value of keff ¼ 1:361959.

The multiplication eigenvalues calculated by both the hybrid method and FEM

seems to converge to the analytical keff as the meshes are refined. For equivalent

meshes, the per cent errors generated by the hybrid method are a little bit smaller

than those generated by FEM. The dimension of the linear system generated by the

hybrid method is smaller than the one generated by the use of the equivalent FEM
mesh. Only in the coarsest mesh, the ((5� 3), (3� 3)) mesh, the linear system
l=3 
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l=16 l=20 l=24

l=13 l=17 l=21

l=27 

l=25 

l=28 

l=26 

l=11 
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x

Fig. 7. The (2� 3) core, (4� 3) reflector finite element mesh used by FEND.



Table 2

keff values for the one-group, multiplication eigenvalue problem

Mesh Method

Core mesh Reflector mesh Hybrid FEM

Ntot keff Ntot keff

5� 3 3� 3 36 1.354105

(0.58%)

36 1.353971

(0.59%)

5� 5 3� 5 52 1.358929

(0.22%)

54 1.357959

(0.29%)

10� 6 6� 6 101 1.360011

(0.14%)

119 1.359964

(0.15%)

10� 10 6� 10 153 1.361227

(0.05%)

187 1.360955

(0.07%)
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dimension generated by both methods are equal. The ratio of the linear system di-

mension of FEM to that of the hybrid method increases as the mesh is refined. This

is expected since the large number of internal reflector nodes is not present in the

hybrid formulation. Taking P 0 ¼ 4000 W/cm and wf ¼ 3:2044� 10�11 Joule/fission,

the average core and reflector fluxes are also calculated. The analytical values of the

average core flux ð�/CÞ and average reflector flux ð�/RÞ found by integration of (98)

are 2.67493� 1013 cm�2 s�1 and 6.33803� 12 cm�2 s�1, respectively. The average core

fluxes calculated by the hybrid method and FEM are almost equal to the analytical
value for all meshes given in Table 2 and have zero error for all practical purposes.

The average reflector flux values calculated by both the hybrid method and FEM are

given in Table 3. The per cent errors compared to the analytical value are also given

in parentheses there. Per cent errors in reflector fluxes seem to be depending basically

on the number of nodes used on the top and bottom sides of the reflector. Increasing

the number of nodes on the left and right sides do not increase the accuracy.

Moreover, they seem to decrease the accuracy a little bit. This behavior is observed

in both hybrid and FEM results. For the reflector average flux, FEM errors are
slightly smaller than the ones generated by the hybrid method in contrast to the

situation in keff comparison.

The third problem, we’ll dwell on is a two-group external neutron source problem

again involving a bare system with a square core of sidelength a with a reflector of

thickness b surrounding the core from left and right. Thus, only the upper-right
Table 3

Average reflector fluxes in units of 1012 cm�2 s�1 for the one-group multiplication eigenvalue problem

Mesh Core 5� 3 5� 5 10� 6 10� 10

Reflector 3� 3 3� 5 6� 6 6� 10

Hybrid 6.47408

(2.15%)

6.53696

(3.14%)

6.37137

(0.53%)

6.38864

(0.80%)

FEM 6.45055

(1.78%)

6.46759

(2.04%)

6.36583

(0.44%)

6.37008

(0.51%)
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quadrant (as given in Fig. 4) is to be discretized. The boundary conditions are taken

to be the same as those in the first problem. But they apply to both groups this time.

We assume there is no external source in the reflector and there is a uniform neutron

source in the core for both groups: s1ð~rÞ ¼ s1, s2ð~rÞ ¼ s2,~r 2 V C; s1ð~rÞ ¼ 0, s2ð~rÞ ¼ 0,
~r 2 V R. The diffusion constants of both groups and both regions are taken to be the

same and equal to D for ease of analytical solution. The flux distribution for this
problem has also been determined analytically as follows:
/1 x; yð Þ ¼

A cosh b1xð Þ cos cyð Þ þ s1
RC
r;1

1� n1 cosh kC1 y
� �
 �

;

0 < x < a=2; 0 < y < a=2;
E0 cosh l1xð Þ � t1 sinh l1xð Þ½ � cos cyð Þ;

a=2 < x < a=2þ b; 0 < y < a=2;

8>>><
>>>:

ð100Þ

/2 x; yð Þ ¼

cos cyð Þ F cosh b2xð Þ þ sC21A cosh b1xð Þ

 �

þsC21 s1
RC
r;1

n2 cosh kC2 y
� �

� n1 cosh kC1 y
� �
 �

þ q 1� n2 cosh kC2 y
� �
 �

;

0 < x < a=2; 0 < y < a=2;
F 0 cosh l2xð Þ � t2 sinh l2xð Þ½ �

�
þ E0s21 cosh l1xð Þ � t1 sinh l1xð Þ½ �g cos cyð Þ;
a=2 < x < a=2þ b; 0 < y < a=2;

8>>>>>>>><
>>>>>>>>:

ð101Þ
where c is the smallest positive root of the transcendental equation:
c tan c ¼ 1

2D
: ð102Þ
The coefficients bg and lg (g ¼ 1; 2) are defined in terms of c as
b2
g ¼ c2 þ kCg

� �2

; l2
g ¼ c2 þ kRg

� �2

:

The coupling coefficients, tg of the reflector and the constant ng of the core are

defined for g ¼ 1 or 2 as
tg ¼
cosh lg a=2þ bð Þ


 �
þ 2Dlg sinh lg a=2þ bð Þ


 �
sinh lg a=2þ bð Þ


 �
þ 2Dlg cosh lg a=2þ bð Þ


 � ; ð103Þ

ng ¼
1

cosh kCg a=2
� �

þ 2DkCg sinh kCg a=2
� � : ð104Þ
The factor A of the first equation in (100) is given in terms of the previously

defined quantities as
A ¼
l1s1d1 n1 coshðkC1 yÞ � 1


 �
RC

r;1 cosðcyÞ l1d1 cosðb1a=2Þ � b1g1 sinðb1a=2Þ½ �
; ð105Þ
where
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dg ¼ sinh lga=2
� �

� tg cosh lga=2
� �

; ð106Þ

gg ¼ cosh lga=2
� �

� tg sinh lga=2
� �

: ð107Þ
The factor E0 of the second equation in (100) is defined in terms of A as
E0 ¼ 1

g1
A cosh b1a=2ð Þ

(
þ
s1 1� n1 cosh kC1 y

� �
 �
RC

r;1 cos cyð Þ

)
: ð108Þ
The factor sC21 which appears in the first equation of (101) is the group-to-group

coupling coefficient of the core and is defined similarly to the reflector group-to-

group coefficient s21 of (47) as
sC21 ¼
RC

s;2 1

D2 kC2ð Þ
2 � kC1ð Þ

2
h i ; ð109Þ
q of the first equation of (100) is another factor characterizing group coupling in the

core and is defined as
q ¼ 1

RC
a;2

RC
s;2 1

Rr;1

s1

"
þ s2

#
: ð110Þ
The factor F 0 of the second equation in (101) is given as
F 0 ¼ E0s21l1d1 � AsC21b1 sin b1a=2ð Þ
b2g2 tanh b2a=2ð Þ � l2d2

� b2 tanh b2a=2ð Þ
b2g2 tanh b2a=2ð Þ � l2d2

E0s21g1

(

� AsC21 cosh b1a=2ð Þ �
sC21s1 n2 cosh kC2 y

� �
þ n1 cosh kC1 y

� �
 �
RC

r;1 cos cyð Þ

�
q 1� n2 cosh kC21y

� �
 �
cos cyð Þ

)
: ð111Þ
The factor F is simply:
F ¼ �t2F 0: ð112Þ

We’ve run this problem with NEDPCM assuming that the core and the reflector

are made of the same material. Thus the two-group constants for both regions are

identical. We assume s1 ¼ 1 cm�1, s2 ¼ 1 cm�1 in the core and zero in the reflector.
The dimensions a=2 ¼ 4:86 cm, b ¼ 20 cm are again assumed. The first and second

group diffusion constants are again assumed to be equal for both groups to render

the analytical solution possible. The cross section data is D ¼ 0:6450 cm,

Rr;1 ¼ 0:0494 cm�1, Ra;2 ¼ 0:0197 cm�1, Rs;2 1 ¼ 0:0490 cm�1. NEDPCM runs have

been made for this two-group external source problem with various hybrid meshes.

The average core group fluxes �/1
C;

�/2
C and the average reflector fluxes �/1

R;
�/2
R ob-

tained with various hybrid meshes along with the analytical values are presented in

Table 4. The per cent errors of various runs relative to the analytical values are also



Table 5

Cross section data for the two-group criticality eigenvalue problem

Rj
r;1 Rj

r;2 tRj
f ;1 tRj

f ;2 Rj
s;2 1

Core (j ¼ C) 0.080117 0.11484 0.0813 0.17843 0.063567

Reflector (j ¼ R) 0.01021 0.00267 0 0 0.01005

Table 4

Average fluxes for the two-group external source problem

Hybrid mesh �/1
C (cm�2 s�1) �/1

R (cm�2 s�1) �/2
C (cm�2 s�1) �/2

R (cm�2 s�1)

Core (FEM) Reflector

(BEM)

5� 4 5� 4 7.490883

(0.30%)

0.777711

(18.02%)

14.820345

(0.67%)

2.094908

(7.31%)

10� 8 10� 8 7.525357

(0.16%)

0.688016

(4.41%)

14.930841

(0.07%)

1.985079

(1.68%)

10� 8 20� 8 7.521299

(0.11%)

0.662078

(0.47%)

14.928408

(0.05%)

1.950161

(0.11%)

Analytical 7.513168 0.65898 14.920575 1.95224
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given in parentheses. The average group fluxes, both in the core and reflector

approach the analytical values as the hybrid meshes are refined. The reflector average

fluxes seem to depend on the number of BEM nodes used on the bottom and top

sides of the reflector.

The last case, we’ll consider is the two-group, multiplication eigenvalue (keff )
determination problem. The upper-right quadrant of the system is again as described

in Fig. 4. The two-group cross sections used for this problem are presented in Table 5

in units of cm�1. To render analytical solution possible, the diffusion constants of
both group and both regions are taken to be equal. That is D ¼ DC

1 ¼ DC
2 ¼

DR
1 ¼ DR

2 ¼ 0:6165356 cm. We have also v1 ¼ 1, v2 ¼ 0. The geometrical data is

again: a=2 ¼ 4:86 cm, b ¼ 20 cm. The analytical solution of this problem is given in

Ozgener and Ozgener (2001). This problem has been run with various hybrid meshes

using NEDPCM. For comparison, we have included the results obtained by the

constant BEM program, namely GLOBAL (Ozgener and Ozgener, 2001). Boundary

element meshes used by GLOBAL are denoted again by the notation (NxC � Ny),

(NxR � Ny). Since GLOBAL is a constant boundary element program, each constant
boundary element contains just one node which is in its geometric center. NxC and

NxR represent the number of constant boundary elements on the top (or bottom)

sides of the core and reflector respectively. Ny is the number of constant boundary

elements on the left and right sides of the core and reflector. A (2� 3) core (4� 3)

reflector constant boundary element mesh represented in Fig. 8. A (NxC � Ny),

(NxR � Ny) constant BEM mesh introduces a total of 2 ðNxC þ NxRÞ þ 3Ny nodes or

2ðNxC þ NxRÞ þ 4Ny unknowns per group since Ny nodes on the core-reflector inter-

face have two unknowns (flux and current) associated with each. In Table 6, the keff
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Fig. 8. The (2� 3) core, (4� 3) reflector constant boundary element mesh used by GLOBAL.

Table 6

keff values for the two group multiplication eigenvalue problem

Method Mesh Ntot keff

Hybrid (5� 4)(5� 4) 48 0.99454 (0.55%)

CBEM (4� 4)(5� 4) 34 0.97826 (2.17%)

Hybrid (10� 8)(10� 8) 135 0.99892 (0.11%)

CBEM (8� 8)(10� 8) 68 0.99288 (0.71%)

Hybrid (20� 16)(20� 16) 429 0.99977 (0.02%)

CBEM (16� 16)(20� 16) 136 0.99781 (0.22%)

CBEM (32� 32)(40� 32) 272 0.99907 (0.09%)
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values obtained by various meshes by the hybrid method and constant BEM are

presented. The per cent errors relative to the analytical keff ¼ 1 are also given un-

derneath in parenthesis. The number of unknowns per energy group (Ntot) associated

with each run is also given. Both the FE/BE hybrid and constant boundary element

methods (CBEM) approach the analytical keff as the mesh is refined. With equal

number of unknowns per group, the per cent error associated with the hybrid FE/BE

method is smaller than that associated with the constant boundary element solution.

Perhaps a better comparison could have been made with a pure linear boundary
element solution. Since our multiregion BEM code (GLOBAL) handles only con-

stant boundary elements, such a comparison could not have been carried out. With

P 0, (thermal reactor power per unit distance) taken as 4000 W/cm and RC
f ;1 ¼ 0:03252

cm�1, RC
f ;2 ¼ 0:071372 cm�1, the average core and reflector group fluxes, calculated

analytically by the hybrid method with various meshes are presented in Table 7.
Table 7

Regionwise average group fluxes calculated by the hybrid method for the two-group multiplication

eigenvalue problem

Mesh �/C
1

(10�13 cm�2 s�1)

�/R
1

(10�13 cm�2 s�1)

�/C
2

(10�13 cm�2 s�1)

�/R
2

(10�13 cm�2 s�1)

(5� 4)(5� 4) 9.0484 (0.21%) 1.1547 (10.71%) 3.2820 (0.27%) 5.7062 (2.36%)

(10� 8)(10� 8) 9.0337 (0.05%) 1.0729 (2.87%) 3.2887 (0.06%) 5.6127 (0.68%)

(20� 16)(20� 16) 9.0303 (0.01%) 1.0508 (0.75%) 3.2903 (0.02%) 5.5855 (0.19%)

Analytical 9.0292 1.0430 3.2908 5.5748
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These results also show the convergence to the analytical values when the mesh is

refined.
4. Conclusions and recommendations

A hybrid formulation involving a FEM mesh for the reactor core and BEM mesh

for the reflector has been developed, implemented and validated. Comparisons with

pure FEM and BEM codes have shown that the hybrid method constitutes a viable

alternative to these methods. In the current implementation of the hybrid method,

the linear system obtained by combining the FEM and BEM equations are stored as

a full matrix. Thus, the advantages stemming from the symmetric and sparse nature

of the FEM matrix are not exploited. A modification in the program for this purpose

would improve the performance of the implementation of the hybrid method.
Further research could be directed towards the extension of the FEM/BEM hybrid

method to multigroup problems involving more than two energy groups. A general

multiregion formulation with an option for using FEM or BEM for each region

could be a topic of further research.
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