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Abstract

A finite element-boundary element hybrid method has been developed for one or two group
neutron diffusion calculations. A linear or bilinear finite element formulation for the reactor
core and a linear boundary element technique for the reflector which are combined through
interface continuity conditions constitute the basis of the developed method. The present
formulation is restricted to two-dimensional geometries and has been implemented in the
developed computer program. Via comparisons with analytical solutions, the proposed
method has been validated. Further comparisons against the pure finite and boundary element
formulations show that the proposed method constitutes a viable alternative for the numerical
solution of neutron diffusion problems of both the external neutron source and multiplication
eigenvalue determination variety.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The finite element method (FEM) is a well-established method in applied math-
ematics and engineering. It is preferred in most applications to its principal alter-
native, the finite difference method (FDM), due to its flexibility in the treatment of
curved or irregular geometries and the high rates of convergence attainable by the
use of high order elements. The first prototype engineering application of FEM was
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in the field structural engineering and dates back to 1956 (Turner et al., 1956). A very
early variational finite element type solution procedure using the principle of mini-
mum potential energy and linear triangular elements was seen in the field of applied
mathematics (Courant, 1943). Starting from 1960s the applied mathematics and
engineering streams of development have started to converge and FEM became a
most extensively used technique in almost every branch of engineering and mathe-
matical physics. The first application of FEM to the theory of neutron diffusion
dates back to 1970s. The developments in the application FEM to the neutron dif-
fusion and even-parity transport equations have been described in the excellent
treatise of Lewis (1981).

The boundary element method (BEM) is a newer method compared to FEM. It is
based upon the conversion of the governing differential equation into a boundary
integral equation (BIE) via Green’s second identity and infinite medium Green’s
functions (fundamental solutions). Since the resulting BIE involves unknowns only
on the system boundary, the dimension of the problem is almost reduced by one.
Although it is possible to trace back a formal presentation of the basic ideas of BEM
to the works of the Russian author Mikhlin (1965), it is generally accepted (Brebbia
et al., 1984), that at least “direct” BEM originated in the work of Cruse and Rizzo
(1968). The expansion of the use of BEM to different fields of engineering and
mathematical physics has been especially faster after the use of the term “Boundary
Element” in a textbook (Brebbia, 1978). The first application of BEM to the neutron
diffusion equation dates back to middle 1980s (Itagaki, 1985). Further research in the
application of BEM to the neutron diffusion equation concentrated on preserving the
“boundary only”’ philosophy of BEM by converting the scattering volume integrals
(Ozgener, 1998) and external neutron source volume integrals (Ozgener and Oz-
gener, 1994) into surface integrals.

Recent investigations in the application of BEM to the neutron diffusion
equation concentrated on the solution of multi-region problems. In BEM formu-
lations developed for the solution of multiregion problems, two distinct approaches
have been taken. In the approach which might be referred as the classical BEM
approach, the BEM equations for each of the homogeneous regions in the system
are assembled together in a block matrix form using the concept of the “virtual
side” and the continuity of the flux and current across material interfaces (Ozgener
and Ozgener, 2001). Although group-to-group scattering domain integrals are re-
duced to boundary integrals via a recently developed BIE (Ozgener, 1998), fission
source domain integrals have still to be evaluated and the determination of the
effective multiplication factor (ko) proceeds through the classical fission source
iteration procedure of nuclear reactor analysis. The second approach which might
be referred as the domain decomposition BEM proceeds without utilizing the fis-
sion source iteration procedure and is based on the domain decomposition method.
The most important advantage of this approach is the elimination of both group-
to-group scattering and fission source domain integrals. Domain decomposition
BEM is based on the diagonalization of the k-estimate dependent infinite me-
dium matrix of each homogeneous region, by a similarity transformation. By this
process, the multiregion diffusion equations for each homogeneous region is



S. Cavdar, H.A. Ozgener | Annals of Nuclear Energy 31 (2004) 1555-1582 1557

transformed into a set of homogenous or nonhomogeneous (if there is an external
source) equations which are either of the Helmholtz or modified Helmholtz type,
depending on the sign of the eigenvalues of the infinite medium matrix. There are
two variants of the domain decomposition BEM. In the first variant which is called
the hierarchical domain decomposition boundary element method (HDD-BEM)
(Purwadi et al., 1998), a two-level calculation procedure is employed. At the lower
level, the Helmholtz (or modified Helmholtz) type mode equations are solved by
constant BEM for each homogeneous region using estimates of the multiplication
factor and nodal values of the mode functions. At the higher level, the multipli-
cation factor and nodal values of the mode functions assumed at interfaces are
modified by Newton’s method to satisfy the continuity conditions for the neutron
flux and current at interfaces. The computational performance of the original
HDD-BEM has been enhanced by using higher-order boundary elements instead
of constant ones in 2-D calculations (Chiba et al., 2001a). The optimization of the
computational performance of the HDD-BEM has also been one of the main
concerns of this work. The HDD-BEM has recently been extended to 3-D-prob-
lems (Chiba et al., 2001b). The second variant of the domain decomposition BEM
is called the response matrix boundary element method (RM-BEM) (Maiani and
Montagnini, 1999). RM-BEM depends also on domain decomposition and em-
ploys a two-level hierarchical procedure like HDD-BEM. In RM-BEM, the BIE’s
of each homogeneous region are expressed in terms of inward and outward partial
current currents at the region boundaries. The response matrix (RM) of each re-
gion relates the outward partial current to the inward partial current. The partial
currents are determined using an iterative method.

FEM and BEM have both advantages and disadvantages relative to each other.
Since BEM restricts the unknowns to region boundaries, the linear system di-
mensions resulting from BEM discretization are greatly reduced relative to FEM
discretization. But the full and nonsymmetric nature of the coefficient matrix of
BEM is clearly a disadvantage relative to the symmetric, sparse and positive-def-
inite FEM coefficient matrix. Since the emergence of FEM and BEM as numerical
solution techniques, many researchers in different areas of engineering and math-
ematical physics tried to combine FEM and BEM in the solution of their problems
in order to exploit the advantages of both methods. Such FE/BE combined
methods are usually termed as hybrid methods. The first hybrid FE/BE formula-
tion was first suggested by Zienkiewicz et al. (1977). Since that time, many variants
of FE/BE hybrid formulations have been proposed in various branches of engi-
neering (Brebbia and Georgios, 1979). Many recent research efforts Guven and
Madenci (2003), Pascal et al. (2003) and Gail et al. (2002) involve hybrid FE/BE
formulations which take specific physical characteristics of the analyzed systems
into account. Although both FEM and BEM have been separately applied in the
field of neutron diffusion, a hybrid FE/BE formulation has not been suggested. In
this paper, we’ll propose a hybrid FE/BE formulation for two region reflected
systems using the classical approach without resorting to domain decomposition
procedures. Such a hybrid FE/BE method, using a FEM formulation in the core
and a BEM formulation in the reflector seems attractive for two reasons. For one
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thing, FEM has proved itself to be a very efficient discretization method especially
in regions where neutron sources are present like a reactor core. For another, BEM
is very efficient especially in regions like reflectors where no fission neutron sources
are present. No internal mesh is necessary even if domain decomposition methods
are not employed. The FE/BE hybrid formulation we’ll develop in this paper is
directed towards nuclear systems consisting of the core and reflector regions. The
development will be within the context of group diffusion theory restricted to one
or two groups. The validation of the developed method will be carried out by
comparison with analytical solutions. Although the relative merit of the suggested
method will be assessed via comparisons with pure BEM and FEM solutions,
optimization of the computational performance of the suggested technique is not
among our aims in this work.

2. Formulation
2.1. Governing equations

We consider a nuclear system consisting of a nuclear reactor core (C) and a re-
flector, (R). The volume and outer surface of the core and reflector are denoted by V'*
and S* where k = C or R. The core-reflector interface (/) is denoted by S'. We assume
that the core and reflector outer surface may consist of two nonoverlapping parts; a
part over which vacuum boundary conditions (v) prevail and another part over
which reflection boundary condition (r) is prescribed. Thus S¢ = S¢US¢ and
SR = SR U SR. A picture of the described nuclear system is presented in Fig. 1. If we
let the energy group index g be 1 or 2, corresponding to first and second energy
groups, the two-group diffusion equations can be written generally as

—DIV®,(7) + 51, () = s, (7) FeV/, j=CorR, (1)

N\
N
S; N
N —

Fig. 1. Nuclear system consisting of the core and the reflector.
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Dé, Z{‘g and sé(?) represent the group diffusion constant, the group removal cross
section and group neutron source of the core (j = C) or the reflector (j = R). @, (¥) is
the g'th group neutron flux. Before FEM or BEM discretization, (1) is usually cast
into the form:
V20, (7) — (kf)zqﬁ M =-D  seyi i_corR )
g g g D ) y J 9

J
g

where the inverse diffusion length is defined as

>
Ay
¢ Dy
Both the FEM formulation for the core and BEM formulation for the reflector is
based on the definition of the residual function:
J (7 24 (7 NV (oS0
R () = V2u() = (k) )+

where ¢, (7) is some approximation to ®,(7). The residual is identically equal to zero
when ¢, () = @,(7), the actual neutron flux. Both BEM and FEM are based on the
requirement that at least the weighted integral of the residual function Rﬁ,(?) over the
system volume vanish for ¢, (), some approximation to ®,(), with some prede-
termined space of weight functions; w(7):

/ WPR,(AAV =0, g=1,2, j=CorR. ®)
Vi

3)

FeV/, j=CorR, (4)

Different choices for the weight function, w(¥) and the approximation to the
neutron flux, ¢,(7), lead to different BEM and FEM formulations.
In the formulation for the core, (5) is in the form:

G )

2
v2¢g(}7) - (k§> qbg(?) + DC
g
For arriving at the equation which forms the basis of FEM formulation, we apply

Green’s First Identity to the first term of (6) to obtain:
= - — 2 —» — ) (’_;) 7 6¢ 7
- c _ g _ e =
Tw(F)- Ve () + (K ) W@y () — wiF) o ]dV /S ()5 2 (FdS =0,

J.
(7)

where §/ =8/ US!, j = C or R and n is the outward normal direction at any point on
S7. If we express the normal derivative in terms of the component of the group g
neutron current J,(7) as

dv =0. (6)

ey (8)
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and apply the reflection boundary condition:

J,(F)=0, FeS, j=CorR 9)
and the vacuum boundary condition:
10,(F) —34,(F) =0, FeSl, j=CorR, (10)
(7) becomes:
[ |95 9,0 + () wi(® ~ w6) 0 gy y L
yC & 8 g DS 2D§
1
x / W(P) g (S + ~ / W), (F)dS = 0, (11)
Su Dg SI

(11) constitutes the starting point for the FEM discretization of the reactor core.
In the formulation for the reflector, (5) is in the form:

/VR o @

- 2o, s

V2, () — (kF) ) + 252
g

For arriving at the equation which forms the basis of the BEM formulation, we

apply Green’s Second Identity to the first term of (12) to obtain:

/VR (bg’(?) [VZW(7) — (k?)zw(?) + M

Dy

dv =0. (12)

v + /S w(?)aa—n(;‘f’)dS

~ Ja ¢g(7)2—v’:(7)dS =0. (13)

Applying (8)—(10); (13) is cast into the form:

/VR ¢g(7) [VZW(7) — (k§)2w(?) + M

v - [ |

D¢
b, ) o (7)1 as— [ 0.0 L (7)] as- [ 6,05 P =0

(14)

Eq. (14) constitutes the starting point for the BEM discretization of the reflector.

2.2. FEM discretization of the reactor core

For the FEM discretization of the reactor core, we assume a 2-D model and
introduce a mesh of linear triangular or bilinear quadrilateral mesh of finite elements
over the reactor core as shown in Fig. 2. The nodes which are not on the core-re-
flector interface are called non-interface nodes and are numbered from j =1 to Nc.
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Fig. 2. Finite element mesh for the core.

On the other hand, the nodes on the core-reflector interface are numbered separately
from k£ =1 to N;. The piecewise linear or bilinear finite element trial function be-
longmg to non-interface nodes j and interface nodes £ are denoted by hC( A=
1,...,Nc) and AL(F)(k=1,...,N;) respectively. We express both the welght func-
tlon w( 7), and the approx1mat10n to the group flux, ¢,(7) in (11) in terms of the
finite element trial functions as

w(F) = () h°F) + (w) B (7), (15)
0.7 = () 50 + (9!) H, (16)

where the Nc dimensional vectors w® gb and N; dimensional vectors w' qbl contain
the function values at the nodes as their elements. We also assume a linear variation
of current over the core-reflector interface and write:

L= (1) BE, Fes (1)

When we substitute (15)—(17) into (11), we obtain:

() a0 + )~ o] + ()" i+ 4228+ (4) 05 - ¢t =
(18)

The Nc X Nc square matrix 4;, Nc x Np rectangular matrix é?, and the two

N; x N square matrices 42 and 41; are defined below:

4§/VC{6ﬁC(7).6[@C(7)1T+ (kC) NG )[hc( )] }dVJrﬁ
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a= [ {rew vfro] « () @] v s g

< [ @@ as, (20)
4, = /V ) {%‘(7) @]+ (k) H e [ﬁ'(?)]T}dV, (21)
2= [ W] o 22)

1 s
9 = e / s (F)RC (Y, (23)
LR @ear (24)
gg - DC yc 8 - :

For (18) to vanish for arbitrary w® and w' we must have:

Ao+ 409 =4, (25)

(/:15‘) ¢S+ 4+ 4V = (26)

The matrices 4; and 4; are symmetric and sparse due to the compact support of
finite element trial functions.

The group source s,(7) consists of the fission/external source and the scattering
source for g = 2. If we are using two-group theory, we can write:

Z Z 7) + 0 (F) + 51{:2252%1(151 (), (27)

where y, and UZC represent the group fission spectrum fraction and the fission yield
cross section of the core respectively. k is the latest estimate for the system effective
multiplication factor (k) during fission source iteration. Q,(¥) is the group external
neutron source. 257%1 is the scattering cross section from group 1 to group 2 of the
core. Since we solve either fission source iteration or external source problems, either
the first or the second term on the right hand side of (27) is present, but not both. If
we use the FEM expansion (16) in (27) and then insert the resulting expression into
(23) and (24) (thus employ the “consistent source approximation” (Ozgener, 1990)),
we obtain:

1 ¢ Jas I C C C Cr 1
—g :% Z{ —g—¢ g *ghg/gg’} +§8 +5g,2 {ézqfl +§2 1¢ (28)
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ﬁ%i[( H) @S +FE g¢;,]+§;+5g‘2{(§§‘%) ¢S+ 8 lqsll}, (29)

where the Nc X Nc square matrices:

EH=% | o) ar, (30)
éilzz%él /Vchc( GG )} dv (31)

are defined as above and have the same structure as Ag The Nc¢ x Np rectangular
matrices which have the same structure as ACI

a 1025 i [l
El, = Dg gl ®] v, (32)
N T
CI _ “s2<1 C /o I/—
s = | o] ar (33)
We have also the N; x N square matrices:
C
I _ XgUZng’ T |70/ T
E =5 [ A0E0] e (34)
¢ T
1 _ Ts21 I/ |70/
s, ===t [ @] ar, (39)

which have the same structure as Al The Nc and N; dimensional external source
vectors are deﬁned as

C
6= g [, 00 (36)

L
.= e [ OBy (7)

Finally, our FEM discretization of the core ends up with the following matricial
equations which are obtained by combining (25), (26), (28) and (29) in the block
matrix form:

c c
A8 A% 01| L | | L EY, 07| %
= = = | _ 2 — T8 = I
(ACI)T Al 4Y ?iq *kg,zzl (_c1 /)T F'0 ff;/
= = = lg =8¢ =g—g = lg,
c
C cl
n §§ Iy =1 S,., 0 %1
1 2 CI 1 N
S (ézq) §2H1 0 JIII
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In case of external source problems, the first term on the right-hand side of (38)
does not exist. On the other hand, during the fission source iteration of the multi-
plication eigenvalue determination problems, the second term on the right side of
(38) vanishes. In either case, (38) represents a linear algebraic system with Nc + 2V
unknowns but only Nc + N; equations. Thus a unique solution of (38) would be
possible only by augmenting it with a linear system resulting from a BEM discret-
ization of the reflector region.

2.3. BEM discretization of the reflector

For the BEM discretization of the reflector, we divide the boundary of the
reflector into a linear boundary element mesh. The nodes which are not on the
core-reflector interface are numbered from i =1 to i = Ng. On the other hand,
the nodes which are on the core-reflector interface are chosen so that they co-
incide with those on the core (FEM) side. Thus we have exactly N; nodes on the
interface, numbered from k = 1 to £ = N; identical to the numbering on the FEM
side (see Fig. 3). BEM discretization is based on the choice of the weight function
w(7) in (14) either as the fundamental solution G,(7,pg,;)(i=1,...,Nr) of the
equation:

VZGg (77 ﬁRJ) - (k;)zcg <?> ﬁR,i) = _5(7 - IBRJ) (39)
or as the fundamental solution G, (7, p,)(k = 1,...,N;) of the equation:
v2Gg (77 ﬁl,k) - (kg)ng (’77 ﬁl,k) =-0 (7 - ﬁl,k) ) (40)
N, N

i+1

227 =l

Fig. 3. Boundary element mesh for the reflector.
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where gr,; and p;, are the position vectors of the nodes on the non-interface
boundary and interface boundary of the reflector respectively. If we take the weight
function in (14) as the fundamental solution of (39) and use the integration property
of the Dirac delta function, we obtain (Ozgener and Ozgener, 1993):

() () + "Sg(?)%(ﬁﬁw)d“/& G #

St () o5+ [ |00 G () 00 o
;

on on ZD};
:sg(ﬁm) i=1,... Ng, (41)
where
(i) = 9(2’7:1') , (42)

with 0(pyg ;) being the subtended internal angle in radians at the node i. The right-
hand side of (41) is given by the volume integral:

Se (ﬁR,i) = /VR Wdl/- (43)

On the other hand, if we take the weight function in (14) as the fundamental
solution of (40) and use the integration property of the Dirac delta function,
equations similar to (41)—(43) can be written for the nodes on the core-reflector in-
terface by simply replacing the subscripts “R,:” by “I,k” and “i=1,...,Nr” by
“k=1,...,N” in those equations. Since there is no fission source in the reflector
and we assume that there is no external neutron source, the only term contributing to
the group source term, s,(¥) in (43) is the scattering source. Since there can be no in-
scattering source for the first group, we have:

0 g=1
2 ) . ) 44
() {25,2&1(]51(”), g=2, (44)
where XX, is group 1 to group 2 scattering cross section of the reflector. Thus:
Sl(ﬁRi) -0 i=1,..., s (45)

Hence, for g = 1, (41) becomes a boundary integral equation (BIE), an integral
equation with unknowns only on the reflector boundary. For the second group, the
right hand side of (41) could be converted into an expression involving only surface
integrals (Ozgener, 1998):
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0G, (.. .

S:(prs) = s e(Pue) b1 (rs) + [, 6O 57 (7o) s

+ /SF $1(7) —G2 (2’_’;)/1’;&1') + % (77 ﬁR,i) ds

6G2 L GZ (73 ﬁR,i) . .
+/s1 ¢()6n( PR;)+TJ1(F) dse i=1,..., Mg,
(46)
where the group coupling coefficient is
ZR
S = 321 . (47)

DY[(k8)? — (k1)’]

Equations similar to (45) and (46) are also valid for the nodes on the core-reflector
interface. For writing these equations, replacing “R,i” by “I,k” and “i =1,... ,Ng”
by “k =1,...,N;” in (45)—(47) will suffice. With (46) inserted into the right-hand side
of (41), the second group equation also becomes a BIE. With no volume integrations
due to scattering source, the “boundary only” philosophy of BEM is preserved in the
reflector equations. Thus, no reflector internal mesh is necessary in the present
formulation. Consequently, the first group BIE is

(Bus) 1 () /¢ % (7 b ds+/¢

+/Sl [¢.(?)%C;(?,ﬁR<i)+GI(F’ﬁR”'>J,(7)} dS=0 i=1,...,Ng.

DY

Gy rpR,) 0G, /. .
2DR on (

r,pRJ) ds

(48)

We have an equation in the same form as (48) for the interface nodes k = 1,..., M.
The second group BIE is obtained by using (46) in (41) and can be written as

(pRz)d)Z PR; /‘f’z an( )dS+/§¢2(7) %?U)

< () o5+ [ |10 (0 ﬁva)+G2(2;R’i>Jz<f> as
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= (i) (i) + [, 005 (7)o

+[ 0@ Gz(zﬁ‘“")ﬁ@(?’ﬁ]{j) ds
SK

2DR on

+/s1 qs()aaiz( ﬁR,,»)+G(r$J1(7) dsY i=1,...,Ne. (49

An equation similar to (49) can also be written for k = 1,..., N;. The BIE’s (48) and
(49) constitute the basic equations for the BEM discretization of the reflector
boundary. The linear boundary element trial functions belonging to non-interface
nodes i and interface nodes k are denoted by AR (F) (i=1,...,Nr) and A (F) (k =
1,...,Ny) respectively. Due to the linearity assumption on both FEM and BEM
sides, the finite element and boundary element trial functions are identical on the
interface. Before expressing the approximations to the group flux, ¢, (7) and current
Jo(7) in (48) and (49), we note that nodes which reside at a junction of S® and S'
belong actually to both. But we have counted our junction nodes as interface nodes
when we numbered the nodes on the reflector boundary. But in the linear boundary
element approximation, the trial functions of such junction nodes also contribute to
the flux and current profile on the noninterface part of the reflector boundary. Thus,
we must express the approximation to the group flux on SR as
T T

0.7 = (%) B'7) + (2)) B, Fest (0)
although the trial function of nonjunction interface nodes actually vanish on S®.
Here, the Ng and N; dimensional vectors Q: and QL contain the group flux values at
the nodes as their elements. On the other hand, the junction nodes are considered to
be part of S'. Thus, we write:

b7 = (1) H). Fes' (51)

without any contribution from S® part of the reflector boundary. Since the flux is
continuous across the interface qb vectors defined on the FEM and BEM sides are
identical. On the other hand, in both FEM and BEM formulations, the current at the
interface is defined as outward directed. But the outward direction for the BEM side
is the inward direction for the FEM side. Thus to be consistent with (17) of the FEM
formulation and using the continuity of the normal component of current we write:

Jo(F) = — (JL) W), Fest, (52)

so that J}g represent the current component in the normal direction from the core to
the reflector. If we substitute (50)—(52) into the group BIE’s of (48) and (49) for non-
interface nodes, we obtain the matricial equations:
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(88) R+ (88) 0 + (6) =0, i=1 N (53)
and
(18) o+ (850) b+ (887) "8 = | () " + (220) e
+<b‘;f)TJ'l}, P= 1N, (54)
where
Q§,=£,+/SRhR *%(*,*Rl)ds+ﬁ/SFgR(f)Gg(r,pRl)ds, i=1,..., N,
(55)
byl /S 1”)%(”,*R,>dS+ﬁ/S§h‘(F)G (7 Bra)dS, i=1,0.. N,
(56)
W= g [ PG (ER)IS =1 N (57
and
(g»:@ﬁ@m} i=1,...,Ne. (58)

Carrying out same steps for the group BIE’s of interface nodes, we obtain the
additional matricial equations:

(8) @ + (8%) 24+ (B1%)

()" ot (o) 2+ (o) a2 o[ (1) 01+ (22) 4

¢ =0, k=1,...,N, (59)
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oG |

IR R /= - = R /— - =

b= [ n (r)a—ng<r,plyk)dS—|—@/S§ﬁ (r)Gg<r,ka>dS, k=1,....N
(63)

and

(ch); = 5k~jc(ﬁl,k)7 k=1,...,N. (64)

Now we define the matrlces BR BRl and B‘RJ as matrices whose rows consist of
(Q?l) (Q?f) and (bRJ )" for i 1 NR respectlvely Slmllarly we define the ma-
trices B ,BY and B as matrices whose rows consist of (bI ", (bIJ )" and (bIR) for
k=1,. ﬁll, respectlvely With these definitions (59) and (53) or (60) and (54) could

be comblned to form the partitioned matrix equation:

1
lBI BIJ BIR Qg BI BIJ BIR Qi
- =021 | /i A Jt g=1,2. (65)
BRI BRJ BR ‘| _ﬁ g,2921 ERI BRJ BR _11{ )
=g =g d) =2 =2 d)l

Lg —

The number of unknowns in the linear system of (65) is 2N; + Ngr; but the
number of equations is Ny + Ng. The number of unknowns becomes equal to the
number of equations only if we combine (38) of FEM formulation with (65) of
BEM formulation to get a linear system with Nc + Ng + 2N; equations and un-
knowns. The combination of these equations will be discussed in the next sub-
section.

2.4. Combination of FEM and BEM equations

The FEM equations (38) and BEM equations (65) could be combined by defining
the (Nc + Nr + 2N;) dimensional square matrices:

B
( ACI)T AL 4" 0
Mo=|\F/) S = = (66)
- 0 I 1 IR
0 BRI RJ BR
L = Ze = =g
C ECI
ooy ey = =

CI T I
= (gg(— g’ ) gg%g’
, :

£
—8—&

oo 1o
i=N= ][}

[f=N{=}
[f=Nl=}
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C c
25 . é2H1 Q Q
cl I
S0 = (§2H> %2 0 2 5 (68)
0 S21§; S2]§;J S211:5’;R
0 SzlngI SzlézRJ Szlél;

and (Nc + N + 2N;) dimensional vectors:

d-[@) () @) @] ©)
/:;—[(gg)T () o 9] (70)

The two-group equations can be written even more compactly, by defining the
block matrices:

M 0
M=| T = } (71)
- [ _§2H1 A:/Iz
F F
E — |::l<—1 :l<—2:| (72)
- =21 =22

and block-vectors:
R 73)
=l (74)

With these definitions, the two-group external source problem is represented by
the matricial equation:

Mu =, (75)
which can be solved by solving the linear systems:

Mu =f, (76)
and

Mu,=f,+8, \u, (77)

consecutively. For fission source iteration problems, we have to solve the linear
system:

Mu" = {1, (78)
at the n'th iteration, where:
1
f(ﬂ) _ Q(ﬂ*l)7 (79)

L J(n—1)
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where k-1 and u"~! are known from the previous iteration. (78) can again be
solved by solving the counterparts of (76) and (77). For one group external source or
fission source iteration problems, the solution algorithm is shortened. The step given
in (77) is absent.

3. Implementation and validation

The developed FE/BE hybrid method is implemented in the FORTRAN program
NEDPCM. The program is capable of handling one and two group diffusion theory
problems of the external source and multiplication factor (ke) determination vari-
ety. The program is developed and tested in PC environments under the MS
WINDOWS operating systems using the MS FORTRAN platform.

The first problem we consider is a one-group external neutron source problem
involving a bare system consisting of a square core of side length a surrounded by a
reflector of thickness 4 from the left and right but not from the top and bottom. Due
to the symmetry, only the upper right quadrant of the system is discretized. Re-
flection boundary conditions on the left and bottom sides of the upper right quad-
rant are utilized to impose the symmetry of the full system. Vacuum boundary
condition prevails naturally at the top and right sides of the bare system. A geo-
metrical description of the upper right quadrant of the system which is to be dis-
cretized is presented in Fig. 4. The governing one-group diffusion equations of the
core and reflector are:

—DV?*p(F) + Z.0(F) =s, FeVE, (80)

—DV?p(F) + Z.p(F) =0, Fe VR, (81)

with the diffusion constant D and the absorption cross section X, of the core and the
reflector taken equal for ease of analytical solution. A uniform external neutron
source of magnitude, s, is assumed to be present in the core. On the other hand, the
reflector is assumed to contain no external neutron source. Since there is only one
group, the group indices g in (1) are dropped in (80) and (81). Since the one-group
absorption cross section (X,) is equal to the one-group removal cross section, X, of
(1) is replaced by 2, in (80) and (81). Egs. (80) and (81) have been solved analytically

Y A
\%
a2
R Core Reflector Vv
0 » x
a2 R a/2+b

Fig. 4. Geometrical description of the upper-right quadrant of the partially reflected system.
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and the analytically derived expressions for the core and reflector average fluxes
denoted by ¢ and ¢y respectively, are presented below:

- sf(ka/2) sinh (fa/2)
b= "2 g(n, pa/2)|, (82)
B = LED 1 4 cosh (pa/2ig(o paf)hta b1, ), (83)

where the functions f, g, and 4 are defined as
sinh (ka/2)
(ka/2)|cosh (ka/2) + 2kDsinh (ka/2)]’

flka/2) =1 -

n
g(n. fa/2) = sinh (Ba/2) — ncosh (Ba/2)’ (85)

cosh[f(a/2+b)]—cosh(fa/2)—t{sinh[B(a/2+D)] —sinh(ﬂa/Z)}.

hab.t.p)= (Bb)[sinh (Ba;2) —rcosh (Ba/2)]
(86)
The factor n and the coupling coefficient ¢ are defined as
cosh (fa/2) — tsinh (fa/2)
" sinh (Ba/2) — tcosh (Ba/2)’ (87)
__sinh [f(a/2 + b)] + 2D cosh [f(a/2 + b)) (88)

~ cosh [f(a/2 + b)] + 2pDsinh [B(a/2 + b)]
The constant f has the definition:

= \/ma (89)

where 7 is the smallest positive root of the transcendental equation:

ptan (va/2) =55 (90)

The one-group external source problem has been run with various FE/BE hybrid
meshes using our program NEDPCM. In general, the core is divided into N,c and N,
equal parts in the x and y-directions respectively so that a bilinear rectangular finite
element mesh with N,c x N, elements is superimposed on the core. Such a mesh is
denoted as a Ny x N, mesh for the core. With a N,c x N, FEM mesh,
N¢ = N¢(N, + 1) and NI N, + 1. The reflector is divided into N, linear boundary
elements on both the interface side and the right side which is parallel to the inter-
face. The bottom and top sides of the reflector is divided into N,z linear boundary
elements. Such a reflector BEM mesh is called a N,z x N, mesh. For such a BEM
mesh Ngp = 2N,z + N, — 1. A hybrid mesh consisting of a (N,c x N,) FEM and
(Neg x N,) BEM mesh with the associated node numbering system is presented in
Fig. 5 for the case Nyc =2, N, =3 and N = 4.
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YA
j=41 j=8=Nci=4=N,  k=10=N; k=9 k=8 k=7
Jj=3 =7 =3 k=6
= = k=5
j=2 = i=2

Py »- o ;
j=1 j=5 =l k=1 k=2 k=3 k=4~

Fig. 5. The (2 x 3) FEM, (4 x 3) BEM hybrid mesh used by NEDPCM.

Table 1

Average fluxes for the one-group external source problem
Hybrid mesh ¢c (cm~' 57 ¢r (cm™' s71) ¢ (cm~! s7!)
Core (FEM) Reflector (BEM)
2x2 2x2 6.62223 (3.12%) 1.50636 (28.8%) 2.50649 (10.07%)
S5x4 5x4 6.81101 (0.36%) 1.23355 (5.47%) 2.32391 (2.05%)
10x8 10x8 6.83616 (0.01%) 1.18594 (1.40%) 2.29053 (0.59%)
20 x 16 20 x 16 6.84024 (0.07%) 1.17267 (0.27%) 2.28065 (0.15%)
Analytical 6.83531 1.16954 227717

NEDPCM runs have been made for this one group external source problem with
various hybrid meshes and the following data: D = 1.77764 cm, X, = 0.0143676
em~', a/2 = 4.86 cm, b = 20 cm, s = 1 neutron/(cm’s). The average core flux ¢, the
average reflector flux, ¢ and the average flux (¢ = xcdc + xr Pr, Where the volume
fractions are defined as xc = a*/[a(a + 2b)] and xg = 1 — xc) obtained with various
hybrid meshes along with their analytical values are presented in Table 1. The per
cent errors of various runs relative to the analytical values are also given in paren-
theses. The average fluxes are seen to converge to the analytical values as the meshes
are refined. The pointwise flux distributions along y = 0, obtained both analytically
and numerically (20 x 16 hybrid mesh) are presented in Fig. 6. The two graphs are
not discernable due to the high accuracy in the numerical solution.

The second problem we consider is again a one-group problem that involves
multiplication eigenvalue (k) determination. We assume again a bare system with
a square core of sidelength a and a reflector of thickness 4 surrounding the core
from left and right. Again, the upper-right quadrant of the system is properly
represented by Fig. 4. The governing one-group diffusion equation for the core and
reflector are:

—DV?¢(F) + 25 p(F) = kiffnzf%(?), Feve, (91)

—-DV?¢(7) + ZRp(7) =0, Fe VR, (92)
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Fig. 6. Flux profile along y = 0 for the one group external source problem.

The diffusion constant of the core and reflector are taken equal to D for the ease
of analytical solution. The problem is to be solved for the largest eigenvalue, k., and
the corresponding nonnegative eigenfunction, the neutron flux, ¢ (7). This problem is
solved numerically by fission source iteration in NEDPCM. This eigenvalue—eigen-
vector problem has been solved analytically and the multiplication eigenvalue (k) is
given by

xC¢/5¢
= 2) (93)
1+ B /(k°)
where
2 2 2
BL=B+B, (94)
B, and B, are the smallest positive roots of the transcendental equations:
1
B,tan (B,a/2) = 3D (95)
cosh (fa/2) — tsinh (fa/2)
B.tan (B.a/2) = — , 6
tan (Bya/2) ﬁsmh (Ba/2) — tcosh (Ba/2) 6)
where
B=1/B2+ (k%) (97)
and
_sinh [f(a/2 + b)] + 2D cosh [f(a/2 + b)] (98)

"= Cosh [B(aj2 1 b)] + 2pDsinh [B(a/2 1 b))
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When the thermal power per unit distance of the nuclear system and the energy
released per fission are denoted by P’ and wy respectively, the flux distribution is
analytically found as

P'B.B,
4w 3¢ sin (Bya/2) sin (B,a/2
0<x<a/2,0<y<al2,
P'B.B,
{ 4w Zf tan (B,a/2) sin (B,a/2)[sinh (Ba/2) — tcosh (Ba/2)] }
{[sinh (Bx) — tcosh (fx)] cos (B,y) },
al2 <x<a/2+b,0<y<al2.

] cos (Byx) cos (B,y),

b(x,y) =

(99)

This problem is also solved by a finite element neutron diffusion program FEND
(Ozgener and Kabadayi, 1996). Finite element meshes used by FEND are also
represented by the notation (N,c X N,), (Niz X N,). The first parenthesis still pre-
serves its original meaning; the second parenthesis describes a bilinear rectangular
finite element mesh consisting of N,z x N, elements superimposed on the reflector
region. An example of FEM mesh used by FEND is given in Fig. 7. While the FEM
mesh of Fig. 7 contains a total of 28 nodes (unknowns); its hybrid equivalent of Fig.
5 contains a total of 22 nodes; but 26 unknowns since each node on the interface has
two unknowns associated with it. For this problem, we have taken D = 0.87 cm,
>€=0.01122 ecm™!, E® =0.0033 cm™!, vEIF =0.0230452 cm~!, If = 0.0921808
cm~!, a/2 =22.5 cm, b =20 cm. In Table 2, the k. values calculated by the pro-
grams NEDPCM (hybrid) and FEND (FEM) with various meshes are presented.
The number of unknowns (Ny,) (which is equal to the dimension of resulting linear
system) is also given for each mesh and method. The values in parenthesis under k.
values give the per cent error relative to the analytical value of kg = 1.361959.

The multiplication eigenvalues calculated by both the hybrid method and FEM
seems to converge to the analytical k. as the meshes are refined. For equivalent
meshes, the per cent errors generated by the hybrid method are a little bit smaller
than those generated by FEM. The dimension of the linear system generated by the
hybrid method is smaller than the one generated by the use of the equivalent FEM
mesh. Only in the coarsest mesh, the ((5x 3), (3 x3)) mesh, the linear system

Y a
=4 =8 I=12 =16 =20 =24 =28
=Bt =11 =15 =19 =23 =27
=2 =10 =14 =18 =2 1=26
; X
I=1 =5 =9 =13 =17 1=21 1=25

Fig. 7. The (2 x 3) core, (4 x 3) reflector finite element mesh used by FEND.
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Table 2
ke values for the one-group, multiplication eigenvalue problem
Mesh Method
Core mesh Reflector mesh Hybrid FEM
Ntm keff ]vtot keff
5%x3 3x3 36 1.354105 36 1.353971
(0.58%) (0.59%)
5x5 3x5 52 1.358929 54 1.357959
(0.22%) (0.29%)
10x 6 6x6 101 1.360011 119 1.359964
(0.14%) (0.15%)
10x 10 6x 10 153 1.361227 187 1.360955
(0.05%) (0.07%)

dimension generated by both methods are equal. The ratio of the linear system di-
mension of FEM to that of the hybrid method increases as the mesh is refined. This
is expected since the large number of internal reflector nodes is not present in the
hybrid formulation. Taking P’ = 4000 W/cm and w; = 3.2044 x 10! Joule/fission,
the average core and reflector fluxes are also calculated. The analytical values of the
average core flux (¢c) and average reflector flux (¢y) found by integration of (98)
are 2.67493 x 10" cm2 s~ and 6.33803 x '> cm ™2 s7!, respectively. The average core
fluxes calculated by the hybrid method and FEM are almost equal to the analytical
value for all meshes given in Table 2 and have zero error for all practical purposes.
The average reflector flux values calculated by both the hybrid method and FEM are
given in Table 3. The per cent errors compared to the analytical value are also given
in parentheses there. Per cent errors in reflector fluxes seem to be depending basically
on the number of nodes used on the top and bottom sides of the reflector. Increasing
the number of nodes on the left and right sides do not increase the accuracy.
Moreover, they seem to decrease the accuracy a little bit. This behavior is observed
in both hybrid and FEM results. For the reflector average flux, FEM errors are
slightly smaller than the ones generated by the hybrid method in contrast to the
situation in k. comparison.

The third problem, we’ll dwell on is a two-group external neutron source problem
again involving a bare system with a square core of sidelength ¢ with a reflector of
thickness b surrounding the core from left and right. Thus, only the upper-right

Table 3
Average reflector fluxes in units of 10'> cm™ s~! for the one-group multiplication eigenvalue problem
Mesh Core 5x3 5x5 10x 6 10 x 10
Reflector 3x3 3x5 6x6 6x10
Hybrid 6.47408 6.53696 6.37137 6.38864
(2.15%) (3.14%) (0.53%) (0.80%)
FEM 6.45055 6.46759 6.36583 6.37008

(1.78%) (2.04%) (0.44%) (0.51%)
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quadrant (as given in Fig. 4) is to be discretized. The boundary conditions are taken
to be the same as those in the first problem. But they apply to both groups this time.
We assume there is no external source in the reflector and there is a uniform neutron
source in the core for both groups: s1(7) = s1, $2(F) = 2, 7 € VE; 51(F) = 0, 52(7) = 0,
7 € VR, The diffusion constants of both groups and both regions are taken to be the
same and equal to D for ease of analytical solution. The flux distribution for this
problem has also been determined analytically as follows:

Acosh (Byx) cos (yy) + 5 [1 — & cosh (AFy)],
¢1(x,y)* 0<x<a/2, O<y<a/27 (100)

; E'[cosh (p;x) — #; sinh (g;x)] cos (yy),
a/l2<x<a/2+b, 0<y<a/2,

cos (yy) [F cosh (Byx) + 55,4 cosh (B,x)]

+s5; ;—Cll (&, cosh (kSy) — & cosh (kFy)] + p[1 — & cosh (k5y)],

¢2(x7y): 0<x<a/2, 0<')/’<Cl/27

{F'[cosh (u,x) — 1, sinh (,x)]

+ E'sy [ cosh (p,x) — ¢ sinh (p;x)]} cos (yy),
a/l2<x<a/2+b, 0<y<a/2,

(101)

where 7 is the smallest positive root of the transcendental equation:

1
ytany:E. (102)

The coefficients 8, and p, (g = 1,2) are defined in terms of y as
Bo=17"+ (kg) w=y+ (kg)
The coupling coefficients, f, of the reflector and the constant &, of the core are
defined for g =1 or 2 as
o cosh [p,(a/2 + b)| + 2Dy, sinh [p,(a/2 + b)]
¢ sinh [u,(a/2 + b)] + 2Dy, cosh [, (a/2 + b)]’

2 2
y .

(103)

1
s (kca/2) +2DkC sinh (ka/2)

(104)

The factor 4 of the first equation in (100) is given in terms of the previously
defined quantities as

A= 15101 [¢, cosh(k{y) — 1]
251 cos(yy) [,U151 cos(Bya/2) — Bimy Sin(ﬁla/2)] )

where

(105)
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8, = sinh (p,a/2) — t,cosh (u,a/2), (106)

n, = cosh (u,a/2) — t,sinh (p,a/2). (107)

The factor E’ of the second equation in (100) is defined in terms of 4 as

1 — & cosh (kfy)]
27y 008 (7y) '

E:l{Ammwﬂpmfd (108)

M

The factor s§, which appears in the first equation of (101) is the group-to-group
coupling coefficient of the core and is defined similarly to the reflector group-to-
group coeflicient s,; of (47) as

Z‘C
(J%ICQ, (109)
D[ (KS) = (kEY’]

p of the first equation of (100) is another factor characterizing group coupling in the
core and is defined as

C _
SH =

C

1 Z‘S 21
=— | . 11
p ZSZ S 51+ 82 ( 0)
The factor F’ of the second equation in (101) is given as
" E'sn 1 — As5, py sin (B1a/2) _ B, tanh (B,a/2) E'sun
Bam, tanh (Bra/2) — py62 Ban, tanh (Bra/2) — 1,6 :
¢ h (k§ h (k¢
1 oot (paf2) 0 Eoc0sh (469) + & cosh (k)]
Z"rtl cos (’))y)
_p[l — &, cosh (kzcly)] . (1)
cos (py)
The factor F is simply:
F=—nF. (112)

We’ve run this problem with NEDPCM assuming that the core and the reflector
are made of the same material. Thus the two-group constants for both regions are
identical. We assume s; = 1 cm™!, s, = 1 cm ™! in the core and zero in the reflector.
The dimensions a/2 = 4.86 cm, b = 20 cm are again assumed. The first and second
group diffusion constants are again assumed to be equal for both groups to render
the analytical solution possible. The cross section data is D = 0.6450 cm,
21 =0.0494 cm™!, 2,5, =0.0197 cm™!, X, 1 = 0.0490 cm~!. NEDPCM runs have
been made for this two-group external source problem with various hybrid meshes.
The average core group fluxes ¢i, ¢¢ and the average reflector fluxes ¢y, pr ob-
tained with various hybrid meshes along with the analytical values are presented in
Table 4. The per cent errors of various runs relative to the analytical values are also
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Table 4
Average fluxes for the two-group external source problem
Hybrid mesh L em2sh)  @r(em?s)  PL(em2s') P (em s
Core (FEM) Reflector
(BEM)
5x4 5x4 7.490883 0.777711 14.820345 2.094908
(0.30%) (18.02%) (0.67%) (7.31%)
10x8 10x8 7.525357 0.688016 14.930841 1.985079
(0.16%) (4.41%) (0.07%) (1.68%)
10x 8 20 x 8 7.521299 0.662078 14.928408 1.950161
(0.11%) (0.47%) (0.05%) (0.11%)
Analytical 7.513168 0.65898 14.920575 1.95224
Table 5
Cross section data for the two-group criticality eigenvalue problem
Z£,1 25.2 vEf, vEf, Zi,l&l
Core (j = C) 0.080117 0.11484 0.0813 0.17843 0.063567
Reflector (j = R) 0.01021 0.00267 0 0 0.01005

given in parentheses. The average group fluxes, both in the core and reflector
approach the analytical values as the hybrid meshes are refined. The reflector average
fluxes seem to depend on the number of BEM nodes used on the bottom and top
sides of the reflector.

The last case, we’ll consider is the two-group, multiplication eigenvalue (ker)
determination problem. The upper-right quadrant of the system is again as described
in Fig. 4. The two-group cross sections used for this problem are presented in Table 5
in units of cm~'. To render analytical solution possible, the diffusion constants of
both group and both regions are taken to be equal. That is D= D{ =D§ =
DY = DY} =0.6165356 cm. We have also y; =1, y, = 0. The geometrical data is
again: a/2 = 4.86 cm, b = 20 cm. The analytical solution of this problem is given in
Ozgener and Ozgener (2001). This problem has been run with various hybrid meshes
using NEDPCM. For comparison, we have included the results obtained by the
constant BEM program, namely GLOBAL (Ozgener and Ozgener, 2001). Boundary
element meshes used by GLOBAL are denoted again by the notation (N,c X N,),
(Neg x N,). Since GLOBAL is a constant boundary element program, each constant
boundary element contains just one node which is in its geometric center. N, and
N, represent the number of constant boundary elements on the top (or bottom)
sides of the core and reflector respectively. N, is the number of constant boundary
elements on the left and right sides of the core and reflector. A (2 x 3) core (4 x 3)
reflector constant boundary element mesh represented in Fig. 8. A (N,c X N,),
(Neg x N,) constant BEM mesh introduces a total of 2 (Nyc + Nig) + 3N, nodes or
2(Nic + Nir) + 4N, unknowns per group since N, nodes on the core-reflector inter-
face have two unknowns (flux and current) associated with each. In Table 6, the k.
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Fig. 8. The (2 x 3) core, (4 x 3) reflector constant boundary element mesh used by GLOBAL.

Table 6

ke values for the two group multiplication eigenvalue problem
Method Mesh Niot ket
Hybrid (5x4)(5%x4) 48 0.99454 (0.55%)
CBEM 4x4)(5x4) 34 0.97826 (2.17%)
Hybrid (10 x 8)(10 x 8) 135 0.99892 (0.11%)
CBEM (8 x 8)(10 x 8) 68 0.99288 (0.71%)
Hybrid (20 x 16)(20 x 16) 429 0.99977 (0.02%)
CBEM (16 x 16)(20 x 16) 136 0.99781 (0.22%)
CBEM (32 x 32)(40 x 32) 272 0.99907 (0.09%)

values obtained by various meshes by the hybrid method and constant BEM are
presented. The per cent errors relative to the analytical k. = 1 are also given un-
derneath in parenthesis. The number of unknowns per energy group (Ny,) associated
with each run is also given. Both the FE/BE hybrid and constant boundary element
methods (CBEM) approach the analytical k. as the mesh is refined. With equal
number of unknowns per group, the per cent error associated with the hybrid FE/BE
method is smaller than that associated with the constant boundary element solution.
Perhaps a better comparison could have been made with a pure linear boundary
element solution. Since our multiregion BEM code (GLOBAL) handles only con-
stant boundary elements, such a comparison could not have been carried out. With
P, (thermal reactor power per unit distance) taken as 4000 W/cm and Xf, = 0.03252
cm™!, Zgz =0.071372 cm™', the average core and reflector group fluxes, calculated
analytically by the hybrid method with various meshes are presented in Table 7.

Table 7
Regionwise average group fluxes calculated by the hybrid method for the two-group multiplication
eigenvalue problem
Mesh b1 ér o5 oy
(10783 cm™2 s71) (107 cm™2 s71) (1075 ecm=2 s71) (1073 ecm™2 s7h)

9.0484 (0.21%) 1.1547 (10.71%) 3.2820 (0.27%) 5.7062 (2.36%)

(5x4)(5x4)

(10 x 8)(10 x 8)
(20 x 16)(20 x 16)

Analytical

9.0337 (0.05%)
9.0303 (0.01%)

9.0292

1.0729 (2.87%)
1.0508 (0.75%)

1.0430

3.2887 (0.06%)
3.2903 (0.02%)

3.2908

5.6127 (0.68%)
5.5855 (0.19%)

5.5748
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These results also show the convergence to the analytical values when the mesh is
refined.

4. Conclusions and recommendations

A hybrid formulation involving a FEM mesh for the reactor core and BEM mesh
for the reflector has been developed, implemented and validated. Comparisons with
pure FEM and BEM codes have shown that the hybrid method constitutes a viable
alternative to these methods. In the current implementation of the hybrid method,
the linear system obtained by combining the FEM and BEM equations are stored as
a full matrix. Thus, the advantages stemming from the symmetric and sparse nature
of the FEM matrix are not exploited. A modification in the program for this purpose
would improve the performance of the implementation of the hybrid method.
Further research could be directed towards the extension of the FEM/BEM hybrid
method to multigroup problems involving more than two energy groups. A general
multiregion formulation with an option for using FEM or BEM for each region
could be a topic of further research.
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