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The Extension of the 2-D Finite Element/Boundary Element 

Hybrid Method to General Multigroup Neutron Diffusion Theory 

Abstract 

The finite element-boundary element hybrid method developed previously for reflected 

systems and restricted to one or two group neutron diffusion theory has been extended to the 

general multigroup neutron diffusion theory by using the boundary integral equation of 

multigroup neutron diffusion theory. A linear or bilinear 2-D FEM formulation in the core 

combined with a 2-D linear BEM formulation in the reflector constitute the basic 

discretization procedure. Use of the boundary integral equation of multigroup diffusion theory 

transforms all group-to-group scattering domain integrals into surface integrals in the 

reflector. Hence the need for a reflector domain mesh is completely eliminated. Via 

comparisons with pure FEM and BEM solutions of the reflected systems within the context of 

three and four group diffusion theories, the present formulation is validated and assessed. 

Die Erweiterung der zwei-dimensionalen Finite 

Elemente/Randelemente Hybridmethode zum allgemeinen 

Mehrgruppen Neutrondiffusionstheorie  

Abstrakt 

Die Finite Elemente-Randelemente Hybridmethode wurde für reflektierte Systeme entwickelt 

und  blieb auf Ein- oder Zweigruppen Neutrondiffusionstheorie beschränkt. Diese Arbeit 

erweitert die obengenannte Methode mit Hilfe der Randintegralgleichung der 

Mehrgruppendiffusionstheorie zum Mehrgruppendiffusiongleichungen. Eine lineare oder 

bilineare zweidimensionale Finite Elemente Formulierung für den Reaktorkern, die mit einer 

linearen zwei-dimensionale Randelemente Formulierung für den Reflektor kombiniert wird, 

stellt das grundlegende Diskretisierungverfahren dar.  Da die Benutzung der 

Randintegralgleichung der Mehrgruppendiffusionstheorie alle Streuungvolumenintegrale zur 

Oberflächeintegrale in dem Reflektor transformiert, wird eine Reflektorvolumenmasche  

überflüssig. Durch Vergleiche mit reinen Finite Elemente und Randelemente Lösungen für 

die reflektierte Systeme in Kontext der Drei- und Viergruppen Theorien wird die präsentierte 

Formulierung validiert und bewertet.  
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1. Introduction 

The first applications of the finite element method (FEM) and the boundary element method 

(BEM) date back to more than three [1] and almost two [2] decades ago respectively. The 

sparse and positive definite nature of the resulting coefficient matrices and the ease of 

treatment of irregular geometries constitute the basic advantages of the FEM in its application 

to the neutron diffusion and transport equations and is discussed fully elsewhere [3]. On the 

other hand, FEM requires a domain mesh and the number of unknowns could dramatically 

increase with mesh refinement. This fact constitutes the basic disadvantage of FEM.  The 

BEM, on the other hand, has the distinct advantage of confining the unknowns to the 

boundaries of each homogeneous region and the resultant dramatic decrease on the unknowns 

relative to the alternative methods (i.e. FEM) [4]. On the other hand, the full and 

nonsymmetric nature of the submatrices corresponding to each homogeneous region is its 

basic disadvantage [5]. The first application of the BEM to the multiregion neutron diffusion 

equation is quite dates back to less than a decade ago [6]. 

In the application of the BEM to the multiregion problems of neutron diffusion, two distinct 

approaches have been taken. In one approach, which may be called the classical BEM 

approach, the BEM equations for each of the homogeneous regions in the system are 

assembled together in a block matrix form using the concept of the “virtual side” and 

continuity of the flux and current across material interfaces [7]. In the second approach which 

is based on the domain decomposition method and could be referred to as domain 

decomposition BEM, the classical fission source iteration procedure of criticality problems is 

eliminated. There are two variants of the domain decomposition BEM. The first variant is 

called the hierarchical domain decomposition BEM  [8],[9],[10]. The second variant of the 

domain decomposition BEM is called the response matrix BEM [11]. A short description of 

the variants of domain decomposition BEM is given elsewhere [12]. In a recent publication, 

the response matrix BEM is based on the application of the Galerkin method and quite 

accurate results are obtained [13]. 

The first application of a hybrid FEM/BEM formulation to the neutron diffusion equation is 

quite recent [12]. In that work, a FEM formulation in the core is combined with a BEM 

approximation in the reflector, for 2-D systems, but the number of groups was limited at most 

to two. In this work, we extend this hybrid FEM/BEM approach to general multigroup 

diffusion theory with arbitrary number of groups, using the boundary integral equation of 

multigroup diffusion theory [14]. The merit of our proposed formulation will be assessed via 
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comparisons with pure BEM and FEM solutions within the context of three and four group 

diffusion theories. 

2. Theory  

We consider a two-dimensional nuclear system consisting of a reactor core (C) and a reflector 

(R). The volume of the core and the reflector are denoted as VC and VR respectively. We 

denote the outer surface of the core and reflector by SC and SR respectively. Either vacuum 

(v) or reflective (r) boundary condition prevails at the outer surface. Thus: C

r

C

v

C
SSS ∪=  and 

R

r

R

v

R
SSS ∪= . The core and the reflector are joined by the interface SI (see Figure 1). 

 

Figure 1 Reflected system 

For ease of presentation of the current formulation, we would like extend the concept of the 

virtual side which was introduced for the multiregion boundary element formulation [7]. In 

that work, a virtual side was defined “as a union of linear segments either joining a pair of 

neighboring cells or belonging solely to a distinct cell at system outer boundary”. Our system 

in this case consists of two cells: the core and the reflector. The reflector cell has two virtual 

sides: The core-reflector interface (I) and its outer surface (R) which is a combined boundary 

virtual side. To render the application of the concept of virtual side to the core cell, to which 

we’ll apply the finite element method (FEM), possible, we define the union of the interior and 

external boundary (V/SI) of the core also as a virtual side (C). Thus, the core consists of two 

virtual sides: core virtual side (C) and core-reflector interface (I) virtual sides. Thus our two-

cell system consists of three virtual sides: C (core except the interface), I (interface), R 

(reflector outer surface). 

We apply the linear or bilinear FEM to the core cell using the Galerkin approach to get [12] 
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in the virtual side notation [7] 

Partitioned vectors and matrices of equations (1) and (2), which follow the virtual side 

notation, are defined in terms of vectors and matrices of our previous work [12] in equations 

(3) to (11). Detailed definition of the quantities an the right hand sides of equations (3)-(11) is 

given in that work and will not be repeated here since increasing the number of groups from 

two to an arbitrary number does not result in any modification in their definitions. 
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The application of the boundary element method (BEM) to the reflector is based on the 

within-group integral equation (equation (27) in [15]) taking the absence of the fission source 

in the reflector into account: 
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Here IR

R SSS ∪=  and encompasses the whole boundary of the reflector, including the core-

reflector interface. We assume that the boundary SR of the reflector is divided into NR linear 

boundary elements, that is: 
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Here ( )ri

r
ψ  is the linear trial function of node i of the BEM mesh of the reflector. ( )ri

r
ψ  is 

linear in the adjacent boundary elements to which the node i belongs. On other elements 
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The relevant boundary conditions are: 
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When (22) and (23) are applied and partitioning into virtual sides are carried out, (16) can be 

rewritten in the virtual side notation  [7]: 
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( )rR

g
φ  is the vector of nodal flux values on the virtual side R at which the reflective boundary 

condition applies while 
( )rR

gJ  is the vector of nodal current values on the virtual side R at 

when the vacuum boundary condition applies. The definitions of the partitioned  vectors and 

matrices of (24) and (25) follow again the virtual side notation  as: 
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Assembly process is carried out combining the core FEM equations, (1) and (2), with the 

reflector BEM equations, (24) and (25), yielding: 
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where: 

 
II

Rg

II

Cg

II

g
AAA

,

,

,

,

,
+=  (34) 

 
R

Rg

I

Cg

I

g sss ,, +=  (35) 

The solution of (33) gives the internal flux distribution of the core and the flux/current 

distribution at the boundaries of the reflector. The flux at any point within the reflector could 

be evaluated simply by taking ρ
r

as an internal point in the reflector equation (12). The details 

about this have been elaborated elsewhere [7]. 

3. Applications 

The newly extended FE/BE hybrid method has been implemented in the FORTRAN program 

MGNEDPCM. The program is capable of handling multigroup diffusion theory problems of 

the keff determination type for reflected reactors. 

The first problem we consider is a three-group treatment of a square core of side length 

a=70cm surrounded by a reflector of thickness b=10cm from the left and right. There is no 

reflector at the top or at the bottom. Due to the symmetry, only the upper-right quadrant of the 

system is discretized. Reflection boundary conditions on the left and bottom sides of the 

upper right quadrant are utilized to impose the symmetry of the full system. Naturally, 

vacuum boundary conditions prevail at the top and right sides of the upper quadrant to be 

discretized. The three group constants are presented in Table 1. There is direct coupling in the 

group-to-group scattering. 

This problem has been run with our hybrid FEM/BEM program MGNEDPCM using a basic 

mesh. The basic hybrid mesh consists of 16x16 bilinear (rectangular) FEM mesh in the core. 

The hybrid mesh in the reflector consists of a basic BEM mesh with 3 linear elements per side 

on the shorter sides, 16 linear elements per side on the longer side. This basic hybrid mesh is 

said to have a degree of refinement n=1. A mesh which consists  of a 16nx16n core FEM 

mesh and a 3n linear element per shorter side-16n linear element per longer side reflector 

BEM mesh is said to have a degree of refinement of n. 
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C
O

R
E

 

Group Dg(cm) Σr,g(cm
-1

) υΣf,g(cm
-1

) Σs,g+1←,g(cm
-1

) χg 

1 1.664 0.04595 0.00407154 0.04239 1. 

2 0.648 0.090624 0.00848 0.0676 0. 

3 0.3512 0.1261 0.181 - 0. 

R
E

F
L

E
C

T
O

R
 

1 1.974 0.0733 0. 0.07327 - 

2 0.577 0.1501 0. 0.1501 - 

3 0.16 0.0197 0. - - 

Table 1 Three group cross sections 

The same problem has also been solved with computer programs implementing pure FEM 

and BEM. The pure FEM program we have used is FEND [15]. The basic FEM mesh of 

FEND entails a 16x16 bilinear (rectangular) element mesh in the core and a 3x16 bilinear 

element mesh in the reflector. This basic FEM mesh is said to have a degree of refinement of 

n=1. A 16nx16n core, 3nx16n reflector FEM mesh is said to have a degree of refinement of n. 

The pure BEM program we have used is GLOBAL (Ozgener and Ozgener, 2001). GLOBAL 

uses constant boundary elements. The basic BEM mesh involves 16 constant boundary 

elements per side in the core and 16 constant boundary elements/longer side and 3 constant 

boundary elements/shorter side in the reflector. A BEM mesh with 16n constant boundary 

elements per side in the core and 16n constant elements/longer side, 3n constant 

elements/shorter side in the reflector is said again to have a degree of refinement of n. 

This problem has been run with our programs implementing the hybrid method, linear FEM 

and constant BEM (CBEM). In Table 2, the number of unknowns and the effective 

multiplication factors (keff) obtained for various degrees of refinements are presented. The 

FEM results with n=16 constitute the reference solution. The per cent errors in parenthesis are 

relative to the keff of the reference solution. 

For a given degree refinement, the number of unknowns in the hybrid formulation is always 

less than the number of unknowns in FEM due to the boundary only discretization of the 

reflector in the hybrid method. For a given degree of refinement, the number of unknowns in 

the hybrid method is larger than the numbers of unknowns in CBEM which entails a 

boundary only discretization also for the core. For a given degree of refinement n, the hybrid 
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method gives the smallest per cent error of the three methods. For higher degrees of 

refinement, the number of unknowns in the CBEM is much smaller than the other two 

methods and the accuracy in keff  of CBEM is between the hybrid and the FEM. In Table 3 and 

Table 4, the average group fluxes for the core and the reflector regions are given. The fluxes 

are so normalized that the system average value of the total flux equals unity. The group g 

average flux is denoted by ( )3,2,1 =ggφ . In all three methods the errors associated with group 

average fluxes in the reflector are larger than their counterparts in the core. The hybrid 

method overestimates the reference group average fluxes both in the core and the reflector 

with the exception of the third group reflector average flux for which all three numerical 

solutions (Hybrid, FEM, CBEM) yield underestimates. FEM and CBEM give overestimates 

for the first and second energy groups in the reflector and underestimates in the core. The 

reverse is valid for the third group. All three numerical methods converge as the degree of 

refinement is increased. 

n 

Number of unknowns/group keff 

Hybrid FEM CFEM Hybrid FEM CBEM 

1 327 340 102 
1.016975 
(-0.0067%) 

1.017591 
(-0.0539%) 

1.017364 
(0.0316%) 

2 1165 1287 204 
1.017017 
(-0.0025%) 

1.017175 
(0.0130%) 

1.017112 
(0.0068%) 

4 4377 5005 408 
1.017029 
(-0.0013%) 

1.017069 
(0.0026%) 

1.017052 
(0.0009%) 

16 - 78385 - - 1.017036 - 

Table 2 Number of unknowns and keff results for the three-group problem 

n 

1φ  2φ  3φ  

Hybrid FEM CBEM Hybrid FEM CBEM Hybrid FEM CBEM 

1 
0.69382 

(0.280%) 

0.69093 

(-0.137%) 

0.69132 

(-0.081%) 

0.31600 

(0.281%) 

0.31471 

(-0.130%) 

0.31468 

(-0.141%) 

0.17302 

(0.322%) 

0.17285 

(0.223%) 

0.17318 

(0.413%) 

2 
0.69239 

(0.074%) 

0.69165 

(-0.033%) 

0.69174 

(-0.020%) 

0.31535 

(0.074%) 

0.31502 

(-0.031%) 

0.31501 

(-0.034%) 

0.17260 

(0.079%) 

0.17256 

(0.054%) 

0.17264 

(0.104%) 

4 
0.69202 

(0.020%) 

0.69183 

(-0.007%) 

0.69186 

(-0.003%) 

0.31518 

(0.020%) 

0.31510 

(-0.006%) 

0.31510 

(-0.007%) 

0.17250 

(0.017%) 

0.17249 

(0.011%) 

0.17251 

(0.024%) 

16 - 0.69188 - - 0.31512 - - 0.17247 - 

Table 3 Core group average fluxes for the three-group problem 
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 1φ  2φ  3φ  

n Hybrid FEM CBEM Hybrid FEM CBEM Hybrid FEM CBEM 

1 
0.10284 

(4.786%) 

0.10250 

(4.438%) 

0.10587 

(7.875%) 

0.05234 

(2.636%) 

0.05288 

(3.696%) 

0.05385 

(5.592%) 

0.20487 

(-8.021%) 

0.21990 

(-1.271%) 

0.21317 

(-4.292%) 

2 
0.09928 

(1.157%) 

0.09918 

(1.052%) 

0.10007 

(1.950%) 

0.05131 

(0.617%) 

0.05144 

(0.868%) 

0.05170 

(1.380%) 

0.21821 

(-2.032%) 

0.22207 

(-0.298%) 

0.22035 

(-1.072%) 

4 
0.09838 

(0.237%) 

0.09835 

(0.210%) 

0.09858 

(0.440%) 

0.05105 

(0.111%) 

0.05108 

(0.173%) 

0.05116 

(0.306%) 

0.22162 

(-0.498%) 

0.22260 

(-0.059%) 

0.22216 

(-0.258%) 

16 - 0.09814 - - 0.05100 - - 0.22273 - 

Table 4 Reflector group average fluxes for the three-group problem 

The second problem, we consider involves a four-group reflected system. The upper two 

groups are in the fast energy range and there is direct coupling in group-to-group scattering. 

The reflected system consists of a square core with a sidelength of 45 cm surrounded by a 

reflector of thickness 15 cm from the left and the right. Again there is no reflector at the top or 

bottom. Due to the symmetry, only the upper right quadrant is discretized. Reflective 

boundary conditions on the left and bottom sides of the upper-right quadrant are utilized to 

impose the symmetry of the full system. Vacuum boundary conditions prevail at the top and 

right sides of the upper-right quadrant. The four group constants for the core and the reflector 

are presented in Table 5. 

C
O

R
E

 

Group Dg(cm) )(cm -1

,grΣ  )(cm -1

,gfΣυ  )(cm -1

1, ggs ←+Σ  gχ  

1 2.1623 0.08795 0.009572 0.083004 0.575 

2 1.0867 0.06124 0.001193 0.0584 0.425 

3 0.6318 0.09506 0.01768 0.0.06453 0.0 

4 0.3543 0.121 0.18514 - 0.0 

R
E

F
L

E
C

T
O

R
 

1 3.2306002 0.094135 0.0 0.094135 - 

2 0.9448411 0.13534 0.0 0.13534 - 

3 0.6012235 0.139863 0.0 0.13869 - 

4 0.1450474 0.019095 0.0 - - 

Table 5 Four group cross sections for the core and the reflector 

The notation for the meshes used for the hybrid, FEM and CBEM solutions are similar to the 

first problem and involve a parameter n, which denotes the degree of refinement. The hybrid 
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mesh with a degree of refinement n involves a 5nx5n bilinear (rectangular) element FEM 

mesh in the core and a 5n linear element per side BEM mesh in the reflector. The FEM 

solution with a degree of refinement n involves a 5nx5n bilinear (rectangular) element finite 

element meshes in both the core and the reflector. The CBEM solution with a degree of 

refinement n involves 5n constant element per side BEM mesh both in the core and the 

reflector. 

The number of unknowns per energy group, the effective multiplication factor (keff) and per 

cent error in keff relative to the reference (n=32, FEM) solution are presented in Table 6. The 

* indicates that particular hybrid run is made with a 4x4 core FEM and a 5 element/side 

reflector BEM mesh. 

n 

Number of unknowns/group keff 

Hybrid FEM BEM Hybrid FEM BEM 

1 56 66 40 
0.937712 

(-0.8355%) 

0.945779 

(0.0177%) 

0.950155 

(0.4804%) 

2 161 231 80 
0.945258 

(-0.0374%) 

0.945652 

(0.0042%) 

0.946871 

(0.1331%) 

4 521 861 160 
0.945577 

(-0.0100%) 

0.945621 

(0.0010%) 

0.945932 

(0.0338%) 

32 - 51681 - - 0.945612  

Table 6 Number of unknowns and keff results for the four group problem 

As in the three group problem, FEM and CBEM approach the reference keff- from above, 

while the hybrid method approaches from below as n is increased. Of the three methods, the 

FEM solution gives the smallest per cent errors in keff for a given degree of refinement. This is 

in contrast to the three group problem where the hybrid method among the three methods 

produced the best keff values for a specified value of n. All three methods converge to the 

reference keff value as the meshes are refined. In Fig. 2 and 3, the average core and reflector 

group fluxes are plotted as a function of n, the degree of refinement. The fluxes are again so 

normalized that the system average value of the total flux equals unity. The reference solution 

(n=32, FEM) is indicated by the dashed horizontal lines. A study of the Fig. 2 and 3 indicates 

that  again FEM  yields the best group average fluxes among the three methods. Nevertheless, 

the hybrid method is a close second. 
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Figure 2 Group core avrage fluxes 
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Figure 3 Group reflector average fluxes for the first three group 
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4. Conclusions and recommendations 

In this work, the FEM/BEM hybrid method for reflected reactors have been extended to 

general multigroup diffusion theory problems. The comparisons with the constant BEM and 

linear FEM solutions within the context of three and four group theories indicate that the 

hybrid method is capable of producing accurate results giving the best (three group problem) 

or a close second best (four group problem) results among the three methods. Thus further 

research in this area seems to be warranted. A general numerically optimized multiregion  

formulation with an option of using FEM or BEM in each region  seems  to be a good choice 

as a topic for further research. 
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