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Abstract

The finite element-boundary element hybrid method developed previously for reflected
systems and restricted to one or two group neutron diffusion theory has been extended to the
general multigroup neutron diffusion theory by using the boundary integral equation of
multigroup neutron diffusion theory. A linear or bilinear 2-D FEM formulation in the core
combined with a 2-D linear BEM formulation in the reflector constitute the basic
discretization procedure. Use of the boundary integral equation of multigroup diffusion theory
transforms all group-to-group scattering domain integrals into surface integrals in the
reflector. Hence the need for a reflector domain mesh is completely eliminated. Via
comparisons with pure FEM and BEM solutions of the reflected systems within the context of
three and four group diffusion theories, the present formulation is validated and assessed.

Die Erweiterung der zwei-dimensionalen Finite
Elemente/Randelemente Hybridmethode zum allgemeinen

Mehrgruppen Neutrondiffusionstheorie

Abstrakt

Die Finite Elemente-Randelemente Hybridmethode wurde fiir reflektierte Systeme entwickelt
und blieb auf Ein- oder Zweigruppen Neutrondiffusionstheorie beschrinkt. Diese Arbeit
erweitert die obengenannte Methode mit Hilfe der Randintegralgleichung der
Mehrgruppendiffusionstheorie zum Mehrgruppendiffusiongleichungen. Eine lineare oder
bilineare zweidimensionale Finite Elemente Formulierung fiir den Reaktorkern, die mit einer
linearen zwei-dimensionale Randelemente Formulierung fiir den Reflektor kombiniert wird,
stellt das grundlegende Diskretisierungverfahren dar. Da die Benutzung der
Randintegralgleichung der Mehrgruppendiffusionstheorie alle Streuungvolumenintegrale zur
Oberfldacheintegrale in dem Reflektor transformiert, wird eine Reflektorvolumenmasche
tiberfliissig. Durch Vergleiche mit reinen Finite Elemente und Randelemente Losungen fiir
die reflektierte Systeme in Kontext der Drei- und Viergruppen Theorien wird die préisentierte
Formulierung validiert und bewertet.



1. Introduction

The first applications of the finite element method (FEM) and the boundary element method
(BEM) date back to more than three [1] and almost two [2] decades ago respectively. The
sparse and positive definite nature of the resulting coefficient matrices and the ease of
treatment of irregular geometries constitute the basic advantages of the FEM in its application
to the neutron diffusion and transport equations and is discussed fully elsewhere [3]. On the
other hand, FEM requires a domain mesh and the number of unknowns could dramatically
increase with mesh refinement. This fact constitutes the basic disadvantage of FEM. The
BEM, on the other hand, has the distinct advantage of confining the unknowns to the
boundaries of each homogeneous region and the resultant dramatic decrease on the unknowns
relative to the alternative methods (i.e. FEM) [4]. On the other hand, the full and
nonsymmetric nature of the submatrices corresponding to each homogeneous region is its
basic disadvantage [5]. The first application of the BEM to the multiregion neutron diffusion

equation is quite dates back to less than a decade ago [6].

In the application of the BEM to the multiregion problems of neutron diffusion, two distinct
approaches have been taken. In one approach, which may be called the classical BEM
approach, the BEM equations for each of the homogeneous regions in the system are
assembled together in a block matrix form using the concept of the “virtual side” and
continuity of the flux and current across material interfaces [7]. In the second approach which
is based on the domain decomposition method and could be referred to as domain
decomposition BEM, the classical fission source iteration procedure of criticality problems is
eliminated. There are two variants of the domain decomposition BEM. The first variant is
called the hierarchical domain decomposition BEM [8],[9],[10]. The second variant of the
domain decomposition BEM is called the response matrix BEM [11]. A short description of
the variants of domain decomposition BEM is given elsewhere [12]. In a recent publication,
the response matrix BEM is based on the application of the Galerkin method and quite

accurate results are obtained [13].

The first application of a hybrid FEM/BEM formulation to the neutron diffusion equation is
quite recent [12]. In that work, a FEM formulation in the core is combined with a BEM
approximation in the reflector, for 2-D systems, but the number of groups was limited at most
to two. In this work, we extend this hybrid FEM/BEM approach to general multigroup
diffusion theory with arbitrary number of groups, using the boundary integral equation of

multigroup diffusion theory [14]. The merit of our proposed formulation will be assessed via
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comparisons with pure BEM and FEM solutions within the context of three and four group

diffusion theories.

2. Theory

We consider a two-dimensional nuclear system consisting of a reactor core (C) and a reflector
(R). The volume of the core and the reflector are denoted as VC and VR respectively. We

denote the outer surface of the core and reflector by SC and SR respectively. Either vacuum

(v) or reflective (r) boundary condition prevails at the outer surface. Thus: S =S5 U S and

S§* =8%USK. The core and the reflector are joined by the interface SI (see Figure 1).
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Figure I Reflected system

For ease of presentation of the current formulation, we would like extend the concept of the
virtual side which was introduced for the multiregion boundary element formulation [7]. In
that work, a virtual side was defined “as a union of linear segments either joining a pair of
neighboring cells or belonging solely to a distinct cell at system outer boundary”. Our system
in this case consists of two cells: the core and the reflector. The reflector cell has two virtual
sides: The core-reflector interface (I) and its outer surface (R) which is a combined boundary
virtual side. To render the application of the concept of virtual side to the core cell, to which
we’ll apply the finite element method (FEM), possible, we define the union of the interior and
external boundary (V/SI) of the core also as a virtual side (C). Thus, the core consists of two
virtual sides: core virtual side (C) and core-reflector interface (I) virtual sides. Thus our two-
cell system consists of three virtual sides: C (core except the interface), I (interface), R

(reflector outer surface).

We apply the linear or bilinear FEM to the core cell using the Galerkin approach to get [12]
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in the virtual side notation [7]
Partitioned vectors and matrices of equations (1) and (2), which follow the virtual side
notation, are defined in terms of vectors and matrices of our previous work [12] in equations
(3) to (11). Detailed definition of the quantities an the right hand sides of equations (3)-(11) is

given in that work and will not be repeated here since increasing the number of groups from

two to an arbitrary number does not result in any modification in their definitions.
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The application of the boundary element method (BEM) to the reflector is based on the
within-group integral equation (equation (27) in [15]) taking the absence of the fission source

in the reflector into account:
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Here S, =S* US' and encompasses the whole boundary of the reflector, including the core-

reflector interface. We assume that the boundary SR of the reflector is divided into NR linear

boundary elements, that is:

0,(7)= 2 (7] (13)
1,7)=Y ) (14)

i=1
Here (7 ) is the linear trial function of node i of the BEM mesh of the reflector. l//,.(F ) is

linear in the adjacent boundary elements to which the node i belongs. On other elements

78 () vanishes. That is:

i=1,...,N
(F)=0., TR 15
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We apply point collocation by demanding (12) to be valid for p=p. (i=1,...,N,) when the

approximations (13) and (14) are made and obtain the matricial equation:
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The relevant boundary conditions are:
J(F)=0, Fe st (22)
¢,(F)=27,(7), FeS’ (23)

When (22) and (23) are applied and partitioning into virtual sides are carried out, (16) can be

rewritten in the virtual side notation [7]:
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where:
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k|9

U, = {_i(‘y)} (26)
I,

(/‘)R(’) is the vector of nodal flux values on the virtual side R at which the reflective boundary

condition applies while J ':(r) is the vector of nodal current values on the virtual side R at

when the vacuum boundary condition applies. The definitions of the partitioned vectors and

matrices of (24) and (25) follow again the virtual side notation as:
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Assembly process is carried out combining the core FEM equations, (1) and (2), with the

reflector BEM equations, (24) and (25), yielding:
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The solution of (33) gives the internal flux distribution of the core and the flux/current
distribution at the boundaries of the reflector. The flux at any point within the reflector could

be evaluated simply by taking p as an internal point in the reflector equation (12). The details

about this have been elaborated elsewhere [7].

3. Applications

The newly extended FE/BE hybrid method has been implemented in the FORTRAN program
MGNEDPCM. The program is capable of handling multigroup diffusion theory problems of

the k.; determination type for reflected reactors.

The first problem we consider is a three-group treatment of a square core of side length
a=70cm surrounded by a reflector of thickness b=10cm from the left and right. There is no
reflector at the top or at the bottom. Due to the symmetry, only the upper-right quadrant of the
system is discretized. Reflection boundary conditions on the left and bottom sides of the
upper right quadrant are utilized to impose the symmetry of the full system. Naturally,
vacuum boundary conditions prevail at the top and right sides of the upper quadrant to be
discretized. The three group constants are presented in Table 1. There is direct coupling in the

group-to-group scattering.

This problem has been run with our hybrid FEM/BEM program MGNEDPCM using a basic
mesh. The basic hybrid mesh consists of 16x16 bilinear (rectangular) FEM mesh in the core.
The hybrid mesh in the reflector consists of a basic BEM mesh with 3 linear elements per side
on the shorter sides, 16 linear elements per side on the longer side. This basic hybrid mesh is
said to have a degree of refinement n=1. A mesh which consists of a 16nx16n core FEM
mesh and a 3n linear element per shorter side-16n linear element per longer side reflector

BEM mesh is said to have a degree of refinement of n.



Group Dy(em) L (em™)  0Zcm™) L lem?) g,

gé 1 1.664 0.04595 0.00407154 0.04239 1.

o

o 2 0.648 0.090624  0.00848 0.0676 0.
3 0.3512  0.1261 0.181 - 0.

% 1 1.974 0.0733 0. 0.07327 -

=

LE) 2 0.577 0.1501 0. 0.1501 -

&

[~ 3 0.16 0.0197 0. - -

Table 1 Three group cross sections

The same problem has also been solved with computer programs implementing pure FEM
and BEM. The pure FEM program we have used is FEND [15]. The basic FEM mesh of
FEND entails a 16x16 bilinear (rectangular) element mesh in the core and a 3x16 bilinear
element mesh in the reflector. This basic FEM mesh is said to have a degree of refinement of
n=1. A 16nx16n core, 3nx16n reflector FEM mesh is said to have a degree of refinement of n.
The pure BEM program we have used is GLOBAL (Ozgener and Ozgener, 2001). GLOBAL
uses constant boundary elements. The basic BEM mesh involves 16 constant boundary
elements per side in the core and 16 constant boundary elements/longer side and 3 constant
boundary elements/shorter side in the reflector. A BEM mesh with 16n constant boundary
elements per side in the core and 16n constant elements/longer side, 3n constant

elements/shorter side in the reflector is said again to have a degree of refinement of n.

This problem has been run with our programs implementing the hybrid method, linear FEM
and constant BEM (CBEM). In Table 2, the number of unknowns and the effective
multiplication factors (k.s) obtained for various degrees of refinements are presented. The
FEM results with n=16 constitute the reference solution. The per cent errors in parenthesis are

relative to the k. of the reference solution.

For a given degree refinement, the number of unknowns in the hybrid formulation is always
less than the number of unknowns in FEM due to the boundary only discretization of the
reflector in the hybrid method. For a given degree of refinement, the number of unknowns in
the hybrid method is larger than the numbers of unknowns in CBEM which entails a

boundary only discretization also for the core. For a given degree of refinement n, the hybrid
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method gives the smallest per cent error of the three methods. For higher degrees of
refinement, the number of unknowns in the CBEM is much smaller than the other two
methods and the accuracy in k.4 of CBEM is between the hybrid and the FEM. In Table 3 and
Table 4, the average group fluxes for the core and the reflector regions are given. The fluxes

are so normalized that the system average value of the total flux equals unity. The group g

average flux is denoted by (Zg (g =1,2,3). In all three methods the errors associated with group

average fluxes in the reflector are larger than their counterparts in the core. The hybrid
method overestimates the reference group average fluxes both in the core and the reflector
with the exception of the third group reflector average flux for which all three numerical
solutions (Hybrid, FEM, CBEM) yield underestimates. FEM and CBEM give overestimates
for the first and second energy groups in the reflector and underestimates in the core. The
reverse is valid for the third group. All three numerical methods converge as the degree of

refinement is increased.

Number of unknowns/group kegr

n  Hybrid FEM CFEM Hybrid FEM CBEM
1.016975 1.017591 1.017364

! 327 340 102 (-0.0067%) (-0.0539%) (0.0316%)
1.017017 1.017175 1.017112

2 1165 1287 204 (-0.0025%) (0.0130%) (0.0068%)
1.017029 1.017069 1.017052

4 4377 5005 408 (-0.0013%) (0.0026%) (0.0009%)

16 - 78385 - - 1.017036 -

Table 2 Number of unknowns and kg results for the three-group problem

o 9, 2
Hybrid FEM CBEM  Hybrid FEM CBEM  Hybrid FEM CBEM

=

0.69382 0.69093 0.69132 0.31600 0.31471 0.31468 0.17302 0.17285 0.17318
(0.280%) (-0.137%) (-0.081%) (0.281%) (-0.130%) (-0.141%) (0.322%) (0.223%) (0.413%)

—_—

0.69239 0.69165 0.69174 0.31535 0.31502 0.31501 0.17260 0.17256 0.17264
(0.074%) (-0.033%) (-0.020%) (0.074%) (-0.031%) (-0.034%) (0.079%) (0.054%) (0.104%)

[\

0.69202 0.69183 0.69186 0.31518 0.31510 0.31510 0.17250 0.17249 0.17251
(0.020%) (-0.007%) (-0.003%) (0.020%) (-0.006%) (-0.007%) (0.017%) (0.011%) (0.024%)

~

16 - 0.69188 - - 0.31512 - - 0.17247 -

Table 3 Core group average fluxes for the three-group problem



4 9, ¢,
n Hybrid FEM CBEM  Hybrid FEM CBEM  Hybrid FEM CBEM

0.10284 0.10250 0.10587 0.05234 0.05288 0.05385 0.20487 0.21990 0.21317

! (4.786%) (4.438%) (7.875%) (2.636%) (3.696%) (5.592%) (-8.021%) (-1.271%) (-4.292%)

0.09928 0.09918 0.10007 0.05131 0.05144 0.05170 0.21821 0.22207 0.22035

2 (1.157%) (1.052%) (1.950%) (0.617%) (0.868%) (1.380%) (-2.032%) (-0.298%) (-1.072%)

0.09838 0.09835 0.09858 0.05105 0.05108 0.05116 0.22162 0.22260 0.22216

4 (0.237%) (0.210%) (0.440%) (0.111%) (0.173%) (0.306%) (-0.498%) (-0.059%) (-0.258%)

16 - 0.09814 - - 0.05100 - - 0.22273 -

Table 4 Reflector group average fluxes for the three-group problem

The second problem, we consider involves a four-group reflected system. The upper two
groups are in the fast energy range and there is direct coupling in group-to-group scattering.
The reflected system consists of a square core with a sidelength of 45 cm surrounded by a
reflector of thickness 15 cm from the left and the right. Again there is no reflector at the top or
bottom. Due to the symmetry, only the upper right quadrant is discretized. Reflective
boundary conditions on the left and bottom sides of the upper-right quadrant are utilized to
impose the symmetry of the full system. Vacuum boundary conditions prevail at the top and
right sides of the upper-right quadrant. The four group constants for the core and the reflector

are presented in Table 5.

Group D,(cm) Y, (em™) 0, (em') X .. . (em") gz,

o1 21623 008795 0009572  0.083004 0.575

§ 2 10867 006124 0001193  0.0584 0.425
3 06318 009506 001768  0.0.06453 0.0
4 03543 0.121 0.18514 - 0.0

% 1 32306002 0094135 0.0 0.094135 :

5 2 09448411 013534 0.0 0.13534 i

S 3 06012235 0139863 00 0.13869 i

2 4 01450474 0019095 0.0 i i

Table 5 Four group cross sections for the core and the reflector

The notation for the meshes used for the hybrid, FEM and CBEM solutions are similar to the

first problem and involve a parameter n, which denotes the degree of refinement. The hybrid
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mesh with a degree of refinement n involves a 5nx5n bilinear (rectangular) element FEM
mesh in the core and a 5n linear element per side BEM mesh in the reflector. The FEM
solution with a degree of refinement n involves a Snx5n bilinear (rectangular) element finite
element meshes in both the core and the reflector. The CBEM solution with a degree of
refinement n involves 5n constant element per side BEM mesh both in the core and the

reflector.

The number of unknowns per energy group, the effective multiplication factor (keff) and per
cent error in keff relative to the reference (n=32, FEM) solution are presented in Table 6. The
* indicates that particular hybrid run is made with a 4x4 core FEM and a 5 element/side

reflector BEM mesh.

Number of unknowns/group kegr

n Hybrid FEM  BEM Hybrid FEM BEM

! 56 66 0.937712  0.945779  0.950155
(-0.8355%) (0.0177%) (0.4804%)

9452 945652 946871

5 161 231 20 0.945258  0.94565 0.9468
(-0.0374%) (0.0042%) (0.1331%)
0.945577  0.945621  0.945932

4 521 861 160
(-0.0100%) (0.0010%) (0.0338%)

32 - 51681 - - 0.945612

Table 6 Number of unknowns and keff results for the four group problem

As in the three group problem, FEM and CBEM approach the reference k.4 from above,
while the hybrid method approaches from below as n is increased. Of the three methods, the
FEM solution gives the smallest per cent errors in k.4 for a given degree of refinement. This is
in contrast to the three group problem where the hybrid method among the three methods
produced the best k. values for a specified value of n. All three methods converge to the
reference k. value as the meshes are refined. In Fig. 2 and 3, the average core and reflector
group fluxes are plotted as a function of n, the degree of refinement. The fluxes are again so
normalized that the system average value of the total flux equals unity. The reference solution
(n=32, FEM) is indicated by the dashed horizontal lines. A study of the Fig. 2 and 3 indicates
that again FEM yields the best group average fluxes among the three methods. Nevertheless,

the hybrid method is a close second.
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Figure 2 Group core avrage fluxes
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Figure 3 Group reflector average fluxes for the first three group
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Figure 4 Fourth group reflector average fluxes
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4. Conclusions and recommendations

In this work, the FEM/BEM hybrid method for reflected reactors have been extended to
general multigroup diffusion theory problems. The comparisons with the constant BEM and
linear FEM solutions within the context of three and four group theories indicate that the
hybrid method is capable of producing accurate results giving the best (three group problem)
or a close second best (four group problem) results among the three methods. Thus further
research in this area seems to be warranted. A general numerically optimized multiregion
formulation with an option of using FEM or BEM in each region seems to be a good choice

as a topic for further research.
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