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Abstract

A boundary integral equation (BIE) is developed for the application of the boundary element method to
the two group neutron diffusion equations. Because the scattering effects are accounted by redefining the
unknowns, BIE include no explicit scattering term. Constant boundary elements are utilized for spatial
discretization.
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Ozet

Bu calismada oncelikle, iki gruplu iki boyutlu nétron difiizyon denklemlerine sinir elemanlar1 yontemini
uygulamak amaciyla, nétron difiizyon denklemlerinin esdegeri sinir integral denklemleri tiiretilmistir.
Smur integral denklemleri tiiretilirken, notron difiizyon denkleminde sozkonusu olan sacilma etkisi
elimine edilmistir. Bu nedenle bilinmeyenler arasinda sac¢ilma terimi yer almamaktadir.

Elde edilen sinur integral denklemleri iizerinde uzaysal ayriklastirma icin Sabit Elemanli Sinir Elemanlar1
Yontemi kullanilmustir.

Anahtar Kelimeler: Notron difiizyon denklemi, sinir integral denklemi, Sinir Elemanlar1 Yontemi

1. Inroduction

The existence of fission, external and slowing down source require internal meshes in
the application of the Boundary Element Method (BEM) to the neutron diffusion
equation.

Since in one-group diffusion theory slowing down volume integrals do not exist, in the
previous works on one-group neutron diffusion researchers have been concerned on
transforming one-group fission source and external source volume integrals into
equivalent surface integrals by using the multiple reciprocity method [1], [2]. In
multigroup diffusion theory, group slowing down source volume integrals are added to
the boundary integral equation. In the case of no fission and within the context of two

or three group theory on the transformation of the slowing down source volume



integrals into equivalent surface integral has been worked out [3]. Here we will discuss

the same transformation in the presence of fission.

2. The derivation of the boundary integral equation
In diffusion theory, time independent two-group diffusion equations for a single region
could be written as:
s
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And in this case, the group source term without upscattering is:
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where;
kg : group inverse diffusion length
D, : group diffusion constant
X e - scattering cross section from group 1 to group 2
S, (1) : group source term
q,(F)  :group fission and/or external source.

For a homogeneous region V, surface S is seperated as S, and S; (S=S;+S,). Assume
that, on S, the vacuum boundary condition is valid and on S; the reflection boundary
condition prevails. The group infinite medium Green's function is defined as the
solution of
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Multiplying eqn.(1) by the fundamental solution, integrating over V and using Green's
Second Identity
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is obtained, where
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U is the internal angle in radians at the boundary point with the position vector p .

In the criticality eigenvalue problems, the group fission source term is:
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If eqn.(3) is rewritten for g=2
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and when this is incorporated into eqn.(5)
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is obtained. Using Green's Second Identity to the second term of right-hand-side of
eqn.(9), it becomes
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Eqn.(1) is rewritten for g=1 and result is inserted into eqn.(10) one gets:
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Using eqn.(11), eqn.(9) can be organized as:
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and substituting eqn (12) into group integral eqn (4) we obtain:
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3. Boundary element discretization

We assume that the mentioned two-dimensional homogeneous region is segmented into
N boundary elements which is of the constant type. For constant boundary elements, the
center of each element is a node. Also, volume V is seperated M sub-volumes. Taking

as p the position vector of a node, eqn.(14) can be written as a boundary integral

equation:
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With matrix notation, eqn.(15) is written compactly as:

HE-GE=F. (17)

In this equation, H and G are NxN matrices; &, 6 and F are vectors whose dimension N.
Since either flux or current is zero, because of boundary conditions, there are actually
N unknown in eqn.(17). When, all unknowns is collected on same side eqn.(17) can be
rewritten as:

Au=F. (18)

4. Numerical results

The developed formulation is implemented in FORTRAN program BEMG2. BEMG2 is
capable of handling both fixed source and criticality problems for a maximum of two
groups.

The results obtained with BEMG2 have been compared with known analytical solutions
and the results of other computer programs (BEMFS and FEND[4]). Thus, BEMG2 is
validated.

The data of results presented in here are found in reference [5].

For infinite medium problems, the medium has been assumed to be a square with side

length 2 cm and reflected boundary condition is applied on all sides.

Table 1. Infinite Medium One Group Fission Source Problem’s Results

Analytical Numerical
4 nodes Error 32 nodes Error
k. 1 1.1345 %13.45 | 1.0017 %0.17
Oinnen 3.12x10° | 3.1209x10" | %0.03 | 3.1264x10" | %0.21
Oboundary) - 0.2500 - 0.2504 -




Table 2. Infinite Medium Two Group Fission Source Problem’s Results

Analytical Numerical
4 nodes Error 32 nodes Error
k. 1.8108 1.8337 %1.26 1.8111 %0.02
1 (inner) 1.8157x10" | 1.82x10" | %0.24 | 1.82x10" | %0.24
02 (inner) 1.0162x10" | 1.02x10"” | %0.37 | 1.02x10"” | %0.37
1 boundary) - 1.4586 - 1.4546 -
O2(boundary) - 8.1363 - 8.1408 -

System with side length 50 cm is considered for fission source problem. But the
problem has been solved using only the upper-right octant, because of symmetry. This
system can be seen in Figure 1. In this figure, V denotes the vacuum boundary condition

and R indicates the reflecting boundary condition.

Figure 1. Octant For Bare, Homogeneous Medium One Group Fission Source Problem
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Table 3. Bare, Homogeneous Medium One Group Fission Source Problem’s Results

Analytical Numerical
12 nodes Error 24 nodes Error
ke 0.9230 0.8931 9%3.24 0.9177 9%0.57
Table 4. Bare, Homogeneous Medium Two Group Fission Source Problem’s Results
Analytical Numerical
12 nodes Error 24 nodes Error
ks 1.9652 1.9789 9%0.70 1.9662 9%0.05




5. Conclusion

In this work, the results obtained with BEMG2 have been compared with known

analytical solutions and the results of other computer programs.

It has been observed that when the number of nodes on boundary increases, the

accuracy of program increases validating the proposed formulation.
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