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Abstract 

A boundary integral equation (BIE) is developed for the application of the boundary element method  to 

the two group neutron diffusion equations. Because the scattering effects are accounted by redefining the 

unknowns, BIE include no explicit scattering term. Constant boundary elements are utilized for spatial 

discretization. 
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Özet 

Bu çalışmada öncelikle, iki gruplu iki boyutlu nötron difüzyon denklemlerine sınır elemanları yöntemini 

uygulamak amacıyla, nötron difüzyon denklemlerinin eşdeğeri sınır integral denklemleri türetilmiştir. 

Sınır integral denklemleri türetilirken, nötron difüzyon denkleminde sözkonusu olan saçılma etkisi 

elimine edilmiştir. Bu nedenle  bilinmeyenler arasında saçılma terimi yer almamaktadır.  

Elde edilen sınır integral denklemleri üzerinde uzaysal ayrıklaştırma için Sabit Elemanlı Sınır Elemanları 

Yöntemi kullanılmıştır.  

Anahtar Kelimeler: Nötron difüzyon denklemi, sınır integral denklemi, Sınır Elemanları Yöntemi 

1. Inroduction 

The existence of fission, external and slowing down source require internal meshes in 

the application of the Boundary Element Method (BEM) to the neutron diffusion 

equation.  

Since in one-group diffusion theory slowing down volume integrals do not exist, in the 

previous works on one-group neutron diffusion researchers have been concerned on 

transforming one-group fission source and external source volume integrals into 

equivalent surface integrals by using the multiple reciprocity method [1], [2]. In 

multigroup diffusion theory, group slowing down source volume integrals are added to 

the boundary integral equation. In the case of no fission and  within the context of two 

or three group theory on the transformation of the slowing down source volume 



integrals into equivalent surface integral has been worked out [3].  Here we will discuss 

the same transformation in the presence of fission. 

2. The derivation of the boundary integral equation 

In diffusion theory, time independent two-group diffusion equations for a single region 

could be written as: 
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And in this case, the group source term without upscattering is: 
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where; 

 kg : group inverse diffusion length  

 Dg : group diffusion constant 

 12←s,gΣ  : scattering cross section from group 1 to group 2 

 )r(Sg

r
 : group source term 

 )(rq g

r
 : group fission and/or external source. 

For a homogeneous region V, surface S is seperated as Sv and Sr (S=Sr+Sv). Assume 

that, on Sv the vacuum boundary condition is valid and on Sr the reflection boundary 

condition prevails. The group infinite medium Green's function is defined as the 

solution of 
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Multiplying eqn.(1) by the fundamental solution, integrating over V and using Green's 

Second Identity 
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is obtained, where 
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and  
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ϑ is the internal angle in radians at the boundary point with the position vector ρ
r

.  

In the criticality eigenvalue problems, the group fission source term is: 
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If eqn.(3) is rewritten for g=2 

  
[ ])(),(

1
),(

)(),(),(

2
2

2
2

2

2
2
22

2

ρδρρ

ρδρρ

rrvvvv

rrvvvv

−+∇=

−−=−∇

rrG
k

rG

rrGkrG

  ( 8 ) 

and when this is incorporated into eqn.(5) 
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is obtained. Using Green's Second Identity to the second term of right-hand-side of 

eqn.(9), it becomes 
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Eqn.(1) is rewritten for g=1 and result is inserted into eqn.(10) one gets: 
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Using eqn.(11), eqn.(9) can be organized as:  
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By defining 
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and substituting eqn (12) into group integral eqn (4) we obtain: 
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3. Boundary element discretization 

We assume that the mentioned two-dimensional homogeneous region is segmented into 

N boundary elements which is of the constant type. For constant boundary elements, the 

center of each element is a node. Also, volume V is seperated M sub-volumes. Taking 

as ρ
r

 the position vector of a node, eqn.(14) can be written as  a boundary integral 

equation: 
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and  
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With matrix notation, eqn.(15) is written compactly as: 

 FGH =− ξδ . ( 17 ) 

In this equation, H and G are NxN matrices; ξ, δ and F are vectors whose dimension N. 

Since either flux or current  is zero, because of boundary conditions, there are actually 

N unknown in eqn.(17). When, all unknowns is collected on same side eqn.(17) can be 

rewritten as: 

 FuA = . ( 18 ) 

4. Numerical results 

The developed formulation is implemented in FORTRAN program BEMG2. BEMG2 is 

capable of handling both fixed source and criticality problems for a maximum of two 

groups. 

The results obtained with BEMG2 have been compared with known analytical solutions 

and the results of other computer programs (BEMFS and FEND[4]). Thus, BEMG2 is 

validated.  

The data of results presented in here are found in reference [5]. 

For infinite medium problems, the medium has been assumed to be a square with side 

length 2 cm and reflected boundary condition is applied on all sides. 

Table 1. Infinite Medium One Group Fission Source Problem’s Results 

 Analytical Numerical 

  4 nodes Error 32 nodes Error 

∞k  1 1.1345 %13.45 1.0017 %0.17 

φ(inner) 3.12x1013 3.1209x1013 %0.03 3.1264x1013 %0.21 

φ(boundary) - 0.2500 - 0.2504 - 

 



Table 2. Infinite Medium Two Group Fission Source Problem’s Results 

 Analytical Numerical 

  4 nodes Error 32 nodes Error 

∞k  1.8108 1.8337 %1.26 1.8111 %0.02 

φ1(inner) 1.8157x1014 1.82x1014 %0.24 1.82x1014 %0.24 

φ2(inner) 1.0162x1015 1.02x1015 %0.37 1.02x1015 %0.37 

φ1(boundary) - 1.4586 - 1.4546 - 

φ2(boundary) - 8.1363 - 8.1408 - 

System with side length 50 cm is considered for fission source problem. But the 

problem has been solved using only the upper-right octant, because of symmetry. This 

system can be seen in Figure 1. In this figure, V denotes the vacuum boundary condition 

and R indicates the reflecting boundary condition. 

Figure 1. Octant For Bare, Homogeneous Medium One Group Fission Source Problem 

Table 3. Bare, Homogeneous Medium One Group Fission Source Problem’s Results 

 Analytical Numerical 

  12 nodes Error 24 nodes Error 

effk  0.9230 0.8931 %3.24 0.9177 %0.57 

Table 4. Bare, Homogeneous Medium Two Group Fission Source Problem’s Results 

 Analytical Numerical 

  12 nodes Error 24 nodes Error 

effk  1.9652 1.9789 %0.70 1.9662 %0.05 

25  

25 0 

R  V 

R 



5. Conclusion 

In this work, the results obtained with BEMG2 have been compared with known 

analytical solutions and the results of other computer programs. 

It has been observed that when the number of nodes on boundary increases, the 

accuracy of program increases validating the proposed formulation. 
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